Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
research-article

Comparison of machine learning methods for stationary wavelet entropy-based multiple sclerosis detection

Published: 01 September 2016 Publication History

Abstract

In order to detect multiple sclerosis MS subjects from healthy controls HCs in magnetic resonance imaging, we developed a new system based on machine learning. The MS imaging data was downloaded from the eHealth laboratory at the University of Cyprus, and the HC imaging data was scanned in our local hospital with volunteers enrolled from community advertisement. Inter-scan normalization was employed to remove the gray-level difference. We adjust the misclassification costs to alleviate the effect of unbalanced class distribution to the classification performance. We utilized two-level stationary wavelet entropy SWE to extract features from brain images. Then, we compared three machine learning based classifiers: the decision tree, k-nearest neighbors kNN, and support vector machine. The experimental results showed the kNN performed the best among all three classifiers. In addition, the proposed SWE+kNN approach is superior to four state-of-the-art approaches. Our proposed MS detection approach is effective.

References

[1]
<ref id="bibr1-0037549716666962">1 Learmonth YC, Motl RW. Physical activity and exercise training in multiple sclerosis: a review and content analysis of qualitative research identifying perceived determinants and consequences. Disabil Rehabil 2016; Volume 38 : pp.1227–1242.
[2]
<ref id="bibr2-0037549716666962">2 Bos SD, Berge T, Celius EG. From genetic associations to functional studies in multiple sclerosis. Eur J Neurol 2016; Volume 23 : pp.847–853.
[3]
<ref id="bibr3-0037549716666962">3 Raggi A, Covelli V, Schiavolin S. Work-related problems in multiple sclerosis: a literature review on its associates and determinants. Disabil Rehabil 2016; Volume 38 : pp.936–944.
[4]
<ref id="bibr4-0037549716666962">4 Sorensen PS, Sellebjerg F, Lycke J. Minocycline added to subcutaneous interferon-1a in multiple sclerosis: randomized RECYCLINE study. Eur J Neurol 2016; Volume 23 : pp.861–870.
[5]
<ref id="bibr5-0037549716666962">5 Tur C. Fatigue management in multiple sclerosis. Curr Treat Opt Neurol 2016; Volume 18 : Article ID 26.
[6]
<ref id="bibr6-0037549716666962">6 Perrin PB, Panyavin I, Paredes AM. A disproportionate burden of care: gender differences in mental health, health-related quality of life, and social support in Mexican multiple sclerosis caregivers. Behav Neurol 2015; 2015.
[7]
<ref id="bibr7-0037549716666962">7 Costello F. Vision disturbances in multiple sclerosis. Semin Neurol 2016; Volume 36 : pp.185–195.
[8]
<ref id="bibr8-0037549716666962">8 Kimbrough DJ, Sotirchos ES, Wilson JA. Retinal damage and vision loss in African American multiple sclerosis patients. Ann Neurol 2015; Volume 77 : pp.228–236.
[9]
<ref id="bibr9-0037549716666962">9 Longbrake EE, Lancia S, Tutlam N. Impaired color vision as determined by Farnsworth Munsell 100 Hue testing is tightly associated with retinal thinning in multiple sclerosis. Multiple Sclerosis J 2014; Volume 20 : pp.358–358.
[10]
<ref id="bibr10-0037549716666962">10 Hoang PD, Gandevia SC, Herbert RD. Prevalence of joint contractures and muscle weakness in people with multiple sclerosis. Disabil Rehabil 2014; Volume 36 : pp.1588–1593.
[11]
<ref id="bibr11-0037549716666962">11 Burschka JM, Keune PM, Hofstadt-van Oy U. Mindfulness-based interventions in multiple sclerosis: beneficial effects of Tai Chi on balance, coordination, fatigue and depression. BMC Neurol 2014; Volume 14 : Article ID 165.
[12]
<ref id="bibr12-0037549716666962">12 Horvath A, Perlaki G, Toth A. Increased diffusion in the normal appearing white matter of brain tumor patients: is this just tumor infiltration?. J Neuro Oncol 2016; Volume 127 : pp.83–90.
[13]
<ref id="bibr13-0037549716666962">13 Magee R, Nolan YM, Downer EJ. An Assessment of inflammatory activity in human post-mortem cortical lesions and normal appearing white matter in multiple sclerosis. Ir J Med Sci 2016; Volume 185 : pp.S19–S20.
[14]
<ref id="bibr14-0037549716666962">14 Wegner C, Swiniarski A, Ott M. Increased ongoing axonal injury in spinal normal-appearing white matter in multiple sclerosis as compared to neuromyelitis optica. Multiple Sclerosis J 2015; Volume 21 : pp.69–69.
[15]
<ref id="bibr15-0037549716666962">15 Murray V, Rodriguez P, Pattichis MS. Multiscale AM-FM demodulation and image reconstruction methods with improved accuracy. IEEE Trans Image Proc 2010; Volume 19 : pp.1138–1152.
[16]
<ref id="bibr16-0037549716666962">16 Siddiqui MF, Reza AW, Kanesan J. An automated and intelligent medical decision support system for brain MRI scans classification. Plos One 2015; Volume 10 : Article ID pp.e0135875.
[17]
<ref id="bibr17-0037549716666962">17 Phillips P, Dong Z, Yang J. Pathological brain detection in magnetic resonance imaging scanning by wavelet entropy and hybridization of biogeography-based optimization and particle swarm optimization. Progr Electromagn Res 2015; Volume 152 : pp.41–58.
[18]
<ref id="bibr18-0037549716666962">18 Khotanlou H, Afrasiabi M. Feature selection in order to extract multiple sclerosis lesions automatically in 3D brain magnetic resonance images using combination of support vector machine and genetic algorithm. J Med Signal Sens 2012; Volume 2 : pp.211–218.
[19]
<ref id="bibr19-0037549716666962">19 Tachinaga S, Hiura Y, Kawashita I. Development of a computer-aided diagnostic system for detecting multiple sclerosis using magnetic resonance images. Nihon Hoshasen Gijutsu Gakkai zasshi 2014; Volume 70 : pp.223–229.
[20]
<ref id="bibr20-0037549716666962">20 Deshpande H, Maurel P, Barillot C. Classification of multiple sclerosis lesions using adaptive dictionary learning. Comput Med Imag Graph 2015; Volume 46 : pp.2–10.
[21]
<ref id="bibr21-0037549716666962">21 Nayak DR, Dash R, Majhi B. Brain MR image classification using two-dimensional discrete wavelet transform and AdaBoost with random forests. Neurocomputing 2016; Volume 177 : pp.188–197.
[22]
<ref id="bibr22-0037549716666962">22 Saritha M, Joseph KP, Mathew AT. Classification of MRI brain images using combined wavelet entropy based spider web plots and probabilistic neural network. Pattern Recognit Lett 2013; Volume 34 : pp.2151–2156.
[23]
<ref id="bibr23-0037549716666962">23 Zhou XX, Ji GL, Yang JQ. Detection of abnormal MR brains based on wavelet entropy and feature selection. IEEJ Trans Electr Electr Eng 2016; Volume 11 : pp.364–373.
[24]
<ref id="bibr24-0037549716666962">24 Du S, Atangana A, Liu A. Application of stationary wavelet entropy in pathological brain detection. Multimedia Tool Appl. Epub ahead of print 11 March 2016.
[25]
<ref id="bibr25-0037549716666962">25 Negi SS, Bhandari YS. A hybrid approach to image enhancement using contrast stretching on image sharpening and the analysis of various cases arising using histogram. In: recent advances and innovations in engineering ICRAIE, Jaipur, 2014.
[26]
<ref id="bibr26-0037549716666962">26 Langarizadeh M, Mahmud R, Ramli AR. Improvement of digital mammogram images using histogram equalization, histogram stretching and median filter. J Med Eng Technol 2011; Volume 35 : pp.103–108.
[27]
<ref id="bibr27-0037549716666962">27 Nguyen N, Vo A, Choi I. A stationary wavelet entropy-based clustering approach accurately predicts gene expression. J Comput Biol 2015; Volume 22 : pp.236–249.
[28]
<ref id="bibr28-0037549716666962">28 Lenis G, Pilia N, Oesterlein T. P wave detection and delineation in the ECG based on the phase free stationary wavelet transform and using intracardiac atrial electrograms as reference. Biomed Eng Biomedizinische Technik 2016; Volume 61 : pp.37–56.
[29]
<ref id="bibr29-0037549716666962">29 Merah M, Abdelmalik TA, Larbi BH. R-peaks detection based on stationary wavelet transform. Comput Meth Program Biomed 2015; Volume 121 : pp.149–160.
[30]
<ref id="bibr30-0037549716666962">30 Dong Z, Liu AJ, Wang S. Magnetic resonance brain image classification via stationary wavelet transform and generalized eigenvalue proximal support vector machine. J Med Imag Health Inform 2015; Volume 5 : pp.1395–1403.
[31]
<ref id="bibr31-0037549716666962">31 Langerudi MF, Rashidi TH, Mohammadian A. Individual trip rate transferability analysis based on a decision tree approach. Transp Plann Technol 2016; Volume 39 : pp.370–388.
[32]
<ref id="bibr32-0037549716666962">32 Bernauer F, Hurkamp K, Ruhm W. Snow event classification with a 2D video disdrometer - a decision tree approach. Atmosph Res 2016; Volume 172 : pp.186–195.
[33]
<ref id="bibr33-0037549716666962">33 Zhang Y, Wang S, Phillips P, Binary PSO with mutation operator for feature selection using decision tree applied to spam detection. Knowl Base Syst 2014; Volume 64 : pp.22–31.
[34]
<ref id="bibr34-0037549716666962">34 Magniez F, Nayak A, Santha M. Improved bounds for the randomized decision tree complexity of recursive majority. Random Struct Algorithm 2016; Volume 48 : pp.612–638.
[35]
<ref id="bibr35-0037549716666962">35 Wylie CE, Shaw DJ, Verheyen KLP. Decision-tree analysis of clinical data to aid diagnostic reasoning for equine laminitis: a cross-sectional study. Vet Rec 2016; Volume 178 : pp.8.
[36]
<ref id="bibr36-0037549716666962">36 Sathyadevan S, Nair RR. Comparative analysis of decision tree algorithms: ID3, C4.5 and random forest. In: Jain LC, Behera HS, Mandal JK. Computational intelligence in data mining. Vol. 31 of Smart Innovation Systems and Technologies. Berlin: Springer, 2015, pp.pp.549–562.
[37]
<ref id="bibr37-0037549716666962">37 An FW, Mihara K, Yamasaki S. Highly flexible nearest-neighbor-search associative memory with integrated k nearest neighbor classifier, configurable parallelism and dual-storage space. Jpn J Appl Phys 2016; Volume 55 : Article ID 04ef10.
[38]
<ref id="bibr38-0037549716666962">38 Chatzimilioudis G, Costa C, Zeinalipour-Yazti D. Distributed in-memory processing of all k nearest neighbor queries. IEEE Trans Knowl Data Eng 2016; Volume 28 : pp.925–938.
[39]
<ref id="bibr39-0037549716666962">39 Park Y, Hwang H, Lee SG. A novel algorithm for scalable k-nearest neighbour graph construction. J Inform Sci 2016; Volume 42 : pp.274–288.
[40]
<ref id="bibr40-0037549716666962">40 Chon AT. Design of lazy classifier based on fuzzy k-nearest neighbors and reconstruction error. J Korean Inst Intell Syst 2010; Volume 20 : pp.101–108.
[41]
<ref id="bibr41-0037549716666962">41 Gonzalez M, Bergmeir C, Triguero I. On the stopping criteria for k-nearest neighbor in positive unlabeled time series classification problems. Inform Sci 2016; Volume 328 : pp.42–59.
[42]
<ref id="bibr42-0037549716666962">42 Siriteerakul T, Boonjing V, Gullayanon R. Character classification framework based on support vector machine and k-nearest neighbour schemes. Scienceasia 2016; Volume 42 : pp.46–51.
[43]
<ref id="bibr43-0037549716666962">43 Almasi ON, Rouhani M. Fast and de-noise support vector machine training method based on fuzzy clustering method for large real world datasets. Turk J Electr Eng Comput Sci 2016; Volume 24 : pp.219–233.
[44]
<ref id="bibr44-0037549716666962">44 Yang X-J, Dong Z-C, Liu G. Pathological brain detection in MRI scanning by wavelet packet Tsallis entropy and fuzzy support vector machine. SpringerPlus 2015; Volume 4 : Article ID 716.
[45]
<ref id="bibr45-0037549716666962">45 Carrasco M, Lopez J, Maldonado S. A second-order cone programming formulation for nonparallel hyperplane support vector machine. Exp Syst Appl 2016; Volume 54 : pp.95–104.
[46]
<ref id="bibr46-0037549716666962">46 Iosifidis A, Gabbouj M. Multi-class support vector machine classifiers using intrinsic and penalty graphs. Pattern Recognit 2016; Volume 55 : pp.231–246.
[47]
<ref id="bibr47-0037549716666962">47 Wang S, Yang X, Zhang Y. Identification of green, Oolong and black teas in China via wavelet packet entropy and fuzzy support vector machine. Entropy 2015; Volume 17 : pp.6663–6682.
[48]
<ref id="bibr48-0037549716666962">48 Negri RG, Dutra LV, Sant'Anna SJS. Comparing support vector machine contextual approaches for urban area classification. Remote Sens Lett 2016; Volume 7 : pp.485–494.
[49]
<ref id="bibr49-0037549716666962">49 Zhang Y-D, Chen S, Wang S-H. Magnetic resonance brain image classification based on weighted-type fractional Fourier transform and nonparallel support vector machine. Int J Imag Syst Technol 2015; Volume 25 : pp.317–327.
[50]
<ref id="bibr50-0037549716666962">50 Newby D, Freitas AA, Ghafourian T. Coping with unbalanced class data sets in oral absorption models. J Chem Inform Model 2013; Volume 53 : pp.461–474.
[51]
<ref id="bibr51-0037549716666962">51 Thomasian A, Li Y, Zhang LJ. Optimal subspace dimensionality for k-nearest-neighbor queries on clustered and dimensionality reduced datasets with SVD. Multimedia Tool Appl 2008; Volume 40 : pp.241–259.
[52]
<ref id="bibr52-0037549716666962">52 Porta A, Castiglioni P, Bari V. K-nearest-neighbor conditional entropy approach for the assessment of the short-term complexity of cardiovascular control. Physiol Meas 2013; Volume 34 : pp.17–33.
[53]
<ref id="bibr53-0037549716666962">53 Lopez FJM, Puertas SM, Arriaza JAT. Training of support vector machine with the use of multivariate normalization. Appl Soft Comput 2014; Volume 24 : pp.1105–1111.
[54]
<ref id="bibr54-0037549716666962">54 Chavan S, Abdelaziz A, Wiklander JG. A k-nearest neighbor classification of hERG K+ channel blockers. J Comput Aid Mol Des 2016; Volume 30 : pp.229–236.
[55]
<ref id="bibr55-0037549716666962">55 Tanveer M, Shubham K, Aldhaifallah M. An efficient regularized k-nearest neighbor based weighted twin support vector regression. Knowl Base Syst 2016; Volume 94 : pp.70–87.
[56]
<ref id="bibr56-0037549716666962">56 Wu L. Pattern recognition via PCNN and Tsallis entropy. Sensors 2008; Volume 8 : pp.7518–7529.
[57]
<ref id="bibr57-0037549716666962">57 Stosic D, Stosic D, Ludermir T. Correlations of multiscale entropy in the FX market. Phys A Stat Mech Appl 2016; Volume 457 : pp.52–61.
[58]
<ref id="bibr58-0037549716666962">58 Sajjadi S, Shamshirband S, Alizamir M. Extreme learning machine for prediction of heat load in district heating systems. Energ Build 2016; Volume 122 : pp.222–227.
[59]
<ref id="bibr59-0037549716666962">59 Zhou X-X, Yang J-F, Sheng H. Combination of stationary wavelet transform and kernel support vector machines for pathological brain detection. Simulation. Epub ahead of print 2 March 2016.
[60]
<ref id="bibr60-0037549716666962">60 Zhang Y, Wu L, Naggaz N. Remote-sensing image classification based on an improved probabilistic neural network. Sensors 2009; Volume 9 : pp.7516–7539.
[61]
<ref id="bibr61-0037549716666962">61 Audhkhasi K, Osoba O, Kosko B. Noise-enhanced convolutional neural networks. Neural Network 2016; Volume 78 : pp.15–23.
[62]
<ref id="bibr62-0037549716666962">62 Zhao JL, Huang WJ. Integrating Landsat TM imagery and see5 decision-tree software for identifying croplands: a case study in Shunyi District, Beijing. In: Gong Z, Luo XF, Chen JJ. eds Web information systems and mining. Lecture Notes in Computer Science, Volume Vol. 6987. Berlin: Springer Press, 2011, pp.pp.251–258.

Cited By

View all
  1. Comparison of machine learning methods for stationary wavelet entropy-based multiple sclerosis detection

      Recommendations

      Comments

      Information & Contributors

      Information

      Published In

      cover image Simulation
      Simulation  Volume 92, Issue 9
      9 2016
      58 pages

      Publisher

      Society for Computer Simulation International

      San Diego, CA, United States

      Publication History

      Published: 01 September 2016

      Author Tags

      1. Multiple sclerosis
      2. decision tree
      3. k-nearest neighbors
      4. machine learning
      5. stationary wavelet entropy
      6. support vector machine

      Qualifiers

      • Research-article

      Contributors

      Other Metrics

      Bibliometrics & Citations

      Bibliometrics

      Article Metrics

      • Downloads (Last 12 months)0
      • Downloads (Last 6 weeks)0
      Reflects downloads up to 13 Jan 2025

      Other Metrics

      Citations

      Cited By

      View all
      • (2023)Perspective of artificial intelligence in healthcare data managementComputers in Biology and Medicine10.1016/j.compbiomed.2023.107051162:COnline publication date: 1-Aug-2023
      • (2023)Tackling class imbalance in computer vision: a contemporary reviewArtificial Intelligence Review10.1007/s10462-023-10557-656:Suppl 1(1279-1335)Online publication date: 20-Jul-2023
      • (2022)Semi-supervised learning for k-dependence Bayesian classifiersApplied Intelligence10.1007/s10489-021-02531-y52:4(3604-3622)Online publication date: 1-Mar-2022
      • (2022)A survey of deep learning methods for multiple sclerosis identification using brain MRI imagesNeural Computing and Applications10.1007/s00521-022-07099-334:10(7349-7373)Online publication date: 1-May-2022
      • (2021)Algorithm for the torque sensorless worm gearbox servo application based on kinetic motion/friction realizationSimulation10.1177/0037549721101798197:8(545-562)Online publication date: 1-Aug-2021
      • (2021)Simulation of three-dimensional female body shapes with proportional representation for various weights and heightsSimulation10.1177/003754972094446696:11(851-866)Online publication date: 25-Feb-2021
      • (2021)Application of Motion Sensor Based on Neural Network in Basketball Technology and Physical Fitness Evaluation SystemWireless Communications & Mobile Computing10.1155/2021/55629542021Online publication date: 1-Jan-2021
      • (2021)Recognition of human activities based on decision optimization modelProceedings of the 2021 4th International Conference on Algorithms, Computing and Artificial Intelligence10.1145/3508546.3508579(1-8)Online publication date: 22-Dec-2021
      • (2021)Alcoholism via wavelet energy entropy and support vector machineProceedings of the 14th IEEE/ACM International Conference on Utility and Cloud Computing Companion10.1145/3492323.3495617(1-6)Online publication date: 6-Dec-2021
      • (2021)Classification of Complex Ecological Objects with the Use of Information Granules2021 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE)10.1109/FUZZ45933.2021.9494466(1-6)Online publication date: 11-Jul-2021
      • Show More Cited By

      View Options

      View options

      Media

      Figures

      Other

      Tables

      Share

      Share

      Share this Publication link

      Share on social media