Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
research-article

Self-organisation, (M, R)–systems and enactive cognitive science

Published: 01 February 2023 Publication History

Abstract

The notion of self-organisation plays a major role in enactive cognitive science. In this paper, I review several formal models of self-organisation that various approaches in modern cognitive science rely upon. I then focus on Rosen’s account of self-organisation as closure to efficient cause and his argument that models of systems closed to efficient cause – (M, R) systems – are uncomputable. Despite being sometimes relied on by enactivists this argument is problematic it rests on assumptions unacceptable for enactivists: that living systems can be modelled as time-invariant and material-independent. I then argue that there exists a simple and philosophically appealing reparametrisation of (M, R)–systems that accounts for the temporal dimensions of life but renders Rosen’s argument invalid.

References

[1]
Ashby WR (1947). Principles of the self-organizing dynamic system. The Journal of General Psychology, 37(2), 125–128. https://doi.org/10.1080/00221309.1947.9918144
[2]
Bak P, Tang C, and Wiesenfeld K (1987). Self-organized criticality: An explanation of the 1/f noise. Physical Review Letters, 59(4), 381–384. https://doi.org/10.1103/PhysRevLett.59.381
[3]
Barandiaran X. E. and Chemero A. (2009). Animats in the modeling ecosystem. Adaptive Behavior, 17(4), 287–292. https://doi.org/10.1177/1059712309340847
[4]
Barandiaran X. and Moreno A. (2008). Adaptivity: From metabolism to behavior. Adaptive Behavior, 16(5), 325–344. https://doi.org/10.1177/1059712308093868
[5]
Bechtel W. (2007). Biological mechanisms: organized to maintain autonomy. In: Systems Biology (pp. 269–302). Elsevier. https://doi.org/10.1016/b978-044452085-2/50014-0
[6]
Bechtel W. (2011). Mechanism and Biological Explanation. Philosophy of Science, 78(4), 533–557. https://doi.org/10.1086/661513
[7]
Bechtel W and Abrahamsen A (2005). Explanation: A mechanist alternative. Studies in History and Philosophy of Science Part C: Studies in History and Philosophy of Biological and Biomedical Sciences, 36(2), 421–441. https://doi.org/10.1016/j.shpsc.2005.03.010
[8]
Bechtel W. and Mundale J. (1999). Multiple realizability revisited: Linking cognitive and neural states. Philosophy of Science, 66(2), 175–207. https://doi.org/10.1086/392683
[9]
Beer R. D. (1990). Intelligence as adaptive behavior: An experiment in computational neuroethology in perspectives in artificial intelligence (6). Boston: Academic Press.
[10]
Bickhard M. H. (2009). The interactivist model. Synthese, 166(3), 547–591. https://doi.org/10.1007/s11229-008-9375-x
[11]
Buckley C. L., Kim C. S., McGregor S., and Seth A. K. (2017). The free energy principle for action and perception: A mathematical review. Journal of Mathematical Psychology, 81(1), 55–79. https://doi.org/10.1016/j.jmp.2017.09.004
[12]
Buhrmann T, Di Paolo EA, and Barandiaran X (2013). A dynamical systems account of sensorimotor contingencies. Frontiers in Psychology, 4(1), 285. https://doi.org/10.3389/fpsyg.2013.00285
[13]
Cárdenas ML, Letelier JC, Gutierrez C, Cornish-Bowden A, and Soto-Andrade J (2010). Closure to efficient causation, computability and artificial life. Journal of Theoretical Biology, 263(1), 79–92. https://doi.org/10.1016/j.jtbi.2009.11.010
[14]
Chemero A. (2008). Self-Organization, Writ Large. Ecological Psychology, 20(3), 257–269. https://doi.org/10.1080/10407410802189372
[15]
Chemero A. (2009). Radical embodied cognitive science (p. ocn305412024). MIT PressOCLC.
[16]
Chemero A. and Turvey M. T. (2008). Autonomy and hypersets. Bio Systems, 91(2), 320–330. https://doi.org/10.1016/j.biosystems.2007.05.010
[17]
Chu D. and Ho W. K. (2006). A category theoretical argument against the possibility of artificial life: Robert Rosen’s central proof revisited. Artificial Life, 12(1), 117–134. https://doi.org/10.1162/106454606775186392
[18]
Clark A. (1997). Being there: Putting brain, body, and world together again. MIT Press.
[19]
Clark A. (2016). Surfing uncertainty: Prediction, action, and the embodied mind. Oxford University Press.
[20]
Clark A. (2017). How to knit your own Markov blanket. Technical report, Theoretical Philosophy/MIND Group – JGU Mainz.
[21]
Collier J. (2004). Fundamental properties of self-organization [unpublished manuscript].
[22]
Copeland B. J. (2020). The church-turing thesis. In Zalta E. N. (Ed), The Stanford Encyclopedia of Philosophy (Summer 2020 edition). Metaphysics Research Lab, Stanford University.
[23]
Cummins R. (1975). Functional analysis. The Journal of Philosophy, 72(20), 741. https://doi.org/10.2307/2024640
[24]
Dempster A. P., Laird N. M., and Rubin D. B. (1977). Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society. Series B (Methodological), 39(1), 1–22. https://doi.org/10.1111/j.2517-6161.1977.tb01600.x Royal Statistical Society, Wiley.
[25]
Dennett D. C. (1995). Darwin’s dangerous idea: Evolution and the meanings of life. Simon & Schuster.
[26]
Downey A. (2018). Think complexity: Complexity science and computational modeling (p. 1043913738). OCLC.
[27]
Ehresmann A. and Vanbremeersch J. (2007). Memory Evolutive systems; hierarchy, Emergence, cognition. ISSN. Elsevier Science.
[28]
Freeman W. J. (2000). Neurodynamics: An exploration in mesoscopic brain dynamics. Perspectives in neural computing. Springer.
[29]
Friston K. (2013). Life as we know it. Journal of The Royal Society Interface, 10(86), 20130475. https://doi.org/10.1098/rsif.2013.0475
[30]
Friston K. J. and Stephan K. E. (2007). Free-Energy and the brain. Synthese, 159(3), 417–458. https://doi.org/10.1007/s11229-007-9237-y
[31]
Froese T. and Ziemke T. (2009). Enactive artificial intelligence: Investigating the systemic organization of life and mind. Artificial Intelligence, 173(3–4), 466–500. https://doi.org/10.1016/j.artint.2008.12.001
[32]
Gánti T. (1971/2003). Chemoton theory: Theory of living systems. Mathematical and computational chemistry. Springer US.
[33]
Gatherer D. and Galpin V. (2013). Rosen’s (M,R) system in process algebra. BMC Systems Biology, 7(1), 128. https://doi.org/10.1186/1752-0509-7-128
[34]
Hofmeyr J.-H. S. (2007). The biochemical factory that autonomously fabricates itself: A systems biological view of the living cell Systems Biology (pp. 217-242). Elsevier. https://doi.org/10.1016/b978-044452085-2/50012-7
[35]
Hofstadter D. R. (1979). Gödel, Escher, Bach: An eternal golden braid (20th anniversary ed edition). Basic Books.
[36]
Huneman P. (Ed), (2007). Understanding purpose: Kant and the philosophy of biology. In North American Kant society studies in philosophy(8, p. ocm82367701). University of Rochester PressOCLC
[37]
Kant I. (1790). Critique of the power of judgment (p. 967410622). OCLC.
[38]
Kauffman SA (1969). Metabolic stability and epigenesis in randomly constructed genetic nets. Journal of Theoretical Biology, 22(3), 437–467. https://doi.org/10.1016/0022-5193(69)90015-0
[39]
Kauffman S. A. (1993). The origins of order: Self-organization and selection in evolution. Oxford University Press.
[40]
Kelso J. A. S. (1995). Dynamic patterns: The self-organization of brain and behavior. MIT Press.
[41]
Kleene S. C. (1956). Representation of events in nerve nets and finite automata. In Shannon C. E. and McCarthy J. (Eds), Automata Studies (pp. 3–42). Princeton University Press. https://doi.org/10.1515/9781400882618-002
[42]
Korbak T. (2021). Computational enactivism under the free energy principle. Synthese, 198(3), 2743–2763. https://doi.org/10.1007/s11229-019-02243-4
[43]
Krajewski S. (2020). On the anti-mechanist arguments based on Gödel’s Theorem. Studia Semiotyczne, 34(1), 9–56. https://doi.org/10.26333/sts.xxxiv1.02
[44]
Louie A. H. (2007). A living system must have noncomputable models. Artificial Life, 13(3), 293-297. https://doi.org/10.1162/artl.2007.13.3.293
[45]
Lucas J. R. (1961). Minds, machines and gödel. Philosophy, 36(137), 112–127. https://doi.org/10.1017/s0031819100057983
[46]
Machamer P., Darden L., and Craver C. F. (2000). Thinking about mechanisms. Philosophy of Science, 67(1), 1–25. https://doi.org/10.1086/392759
[47]
Marquis J.-P. (2008). Category theory. In The Stanford Encyclopedia of Philosophy, E. N. Zalta (Ed.). https://plato.stanford.edu/entries/category-theory/
[48]
Maturana H. R. and Varela F. J. (1980). Autopoiesis and cognition: The realization of the living, volume 42 of Boston studies in the philosophy and history of science. Springer Netherlands.
[49]
McCulloch W. S. and Pitts W. (1943). A logical calculus of the ideas immanent in nervous activity. The Bulletin of Mathematical Biophysics, 5(4), 115–133. https://doi.org/10.1007/bf02478259
[50]
Meadows D. H. (2008). Thinking in systems: A primer (p. 225871309). Chelsea Green Pub. OCLC.
[51]
Mikulecky D. C. (2001). Robert Rosen (1934–1998): a snapshot of biology’s Newton. Computers & Chemistry, 25(4), 317–327. https://doi.org/10.1016/s0097-8485(01)00079-1
[52]
Millikan R. (2002). Biofunctions: Two paradigms. In Ariew A. (Ed), Functions (pp. 113–143). Oxford University Press.
[53]
Mitchell M. (2011). Complexity: A guided tour (paperback ed edition, 1, p. 870195766). Oxford: Oxford Univ. PressOCLC.
[54]
Montévil M. (2020). Historicity at the heart of biology. Theory in biosciences. https://montevil.org/publications/articles/2020-Montevil-Historicity-Heart-Biology/
[55]
Mossio M., Longo G., and Stewart J. (2009). A computable expression of closure to efficient causation. Journal of Theoretical Biology, 257(3), 489–498. https://doi.org/10.1016/j.jtbi.2008.12.012
[56]
Nasuto S. J. and Hayashi Y. (2016). Anticipation: Beyond synthetic biology and cognitive robotics. Bio Systems, 148(1), 22–31. What Synthetic Biology can offer to Artificial Intelligence. https://doi.org/10.1016/j.biosystems.2016.07.011
[57]
Nicolis G. and Prigogine I. (1977). Self-organization in nonequilibrium systems: From dissipative structures to order through fluctuations. Wiley.
[58]
O’Regan J. K. and Noë A. (2001). A sensorimotor account of vision and visual consciousness. Behavioral and Brain Sciences, 24(5), 939-973.
[59]
Palmer M. L., Williams R. A., and Gatherer D. (2016). Rosen’s (M,R) system as an X-machine. Journal of Theoretical Biology, 408(Supp 1), 97–104. https://doi.org/10.1016/j.jtbi.2016.08.007
[60]
Pattee H. H. (2012). How does a molecule become a message? LAWS, LANGUAGE and LIFE (volume 7, pp. 55-67). Springer Netherlands. Series Title: Biosemiotics. https://doi.org/10.1007/978-94-007-5161-3_3
[61]
Piccinini G. (2004). The first computational theory of mind and brain: a close look at mcculloch and pitts’s “logical calculus of ideas immanent in nervous activity”. Synthese, 141(2), 175–215. https://doi.org/10.1023/b:synt.0000043018.52445.3e
[62]
Port R. F. and Van Gelder T. (Eds), (1995). Mind as motion: explorations in the dynamics of cognition. MIT Press.
[63]
Rączaszek-Leonardi J. (2012). Language as a system of replicable constraints. In LAWS, LANGUAGE and LIFE (Vol. 7, pp. 295-333). Dordrecht.: Springer Netherlands. Series Title: Biosemiotics.
[64]
Rosen R. (1991). Life itself: A comprehensive inquiry into the nature, origin, and fabrication of life. Complexity in ecological systems series (p. 254407824). New York: Columbia Univ. PressOCLC.
[65]
Rosen R. (1993). On models and modeling. Applied mathematics and computation, 56(2–3), 359–372. https://doi.org/10.1016/0096-3003(93)90128-2
[66]
Rosen R. (2000). Essays on life itself. Columbia University Press.
[67]
Rosenblueth A., Wiener N., and Bigelow J. (1943). Behavior, purpose and teleology. Philosophy of Science, 10(1), 18–24. https://doi.org/10.1086/286788
[68]
Ruiz-Mirazo K. and Moreno A. (2004). Basic autonomy as a fundamental step in the synthesis of life. Artificial Life, 10(3), 235–259. https://doi.org/10.1162/1064546041255584
[69]
Ruiz-Mirazo K., Peretó J., and Moreno A. (2004). A universal definition of life: Autonomy and open-ended evolution. Origins of Life and Evolution of the Biosphere: The Journal of the International Society for the Study of the Origin of Life, 34(3), 323–346. https://doi.org/10.1023/b:orig.0000016440.53346.dc
[70]
Skarda C. A. and Freeman W. J. (1987). How brains make chaos in order to make sense of the world. Behavioral and Brain Sciences, 10(2), 161–173. https://doi.org/10.1017/s0140525x00047336
[71]
Smith L. B. and Thelen E. (2003). Development as a dynamic system. Trends in Cognitive Sciences, 7(8), 343–348. https://doi.org/10.1016/s1364-6613(03)00156-6
[72]
Thompson E. (2010). Mind in life: Biology, phenomenology, and the sciences of mind (paperback ed edition, 1, p. 839038747). Cambridge, Mass: Belknap Press of Harvard Univ. Pressharvard univ. pressOCLC.
[73]
Thompson E. and Stapleton M. (2009). Making sense of sense-making: Reflections on enactive and extended mind theories. Topoi, 28(1), 23–30. https://doi.org/10.1007/s11245-008-9043-2
[74]
Turing A. M. (1937). On computable numbers, with an application to the entscheidungsproblem. Proceedings of the London Mathematical Society, s2-42(1), 230–265. https://doi.org/10.1112/plms/s2-42.1.230
[75]
Varela F. G., Maturana H. R., and Uribe R. (1974). Autopoiesis: The organization of living systems, its characterization and a model. Bio Systems, 5(4), 187–196. https://doi.org/10.1016/0303-2647(74)90031-8
[76]
Weber A. and Varela F. J. (2002). Life after Kant: Natural purposes and the autopoietic foundations of biological individuality. Phenomenology and the Cognitive Sciences, 1(2), 97–125. https://doi.org/10.1023/a:1020368120174
[77]
Wiener N. (2019). Cybernetics: Or, control and communication in the animal and the machine (second editionreissue edition). The MIT Press.

Index Terms

  1. Self-organisation, (M, R)–systems and enactive cognitive science
          Index terms have been assigned to the content through auto-classification.

          Recommendations

          Comments

          Information & Contributors

          Information

          Published In

          cover image Adaptive Behavior - Animals, Animats, Software Agents, Robots, Adaptive Systems
          Adaptive Behavior - Animals, Animats, Software Agents, Robots, Adaptive Systems  Volume 31, Issue 1
          Feb 2023
          96 pages
          This article is distributed under the terms of the Creative Commons Attribution 4.0 License (https://creativecommons.org/licenses/by/4.0/) which permits any use, reproduction and distribution of the work without further permission provided the original work is attributed as specified on the SAGE and Open Access page (https://us.sagepub.com/en-us/nam/open-access-at-sage).

          Publisher

          Sage Publications, Inc.

          United States

          Publication History

          Published: 01 February 2023

          Author Tags

          1. Self-organisation
          2. relational biology
          3. closure to efficient cause
          4. enactivism
          5. Markov blankets

          Qualifiers

          • Research-article

          Contributors

          Other Metrics

          Bibliometrics & Citations

          Bibliometrics

          Article Metrics

          • 0
            Total Citations
          • 0
            Total Downloads
          • Downloads (Last 12 months)0
          • Downloads (Last 6 weeks)0
          Reflects downloads up to 01 Nov 2024

          Other Metrics

          Citations

          View Options

          View options

          Get Access

          Login options

          Media

          Figures

          Other

          Tables

          Share

          Share

          Share this Publication link

          Share on social media