Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.14236/ewic/FDIA2015.5guideproceedingsArticle/Chapter ViewAbstractPublication PagesConference Proceedingsacm-pubtype
research-article
Free access

Heterogeneous information access through result composition

Published: 02 September 2015 Publication History

Abstract

Modern search engines aggregate information from a variety of sources (e.g. images, videos) and return this information to users, merged into a single results page. Current aggregation techniques are limited to merging blocks of heterogeneous content into organic result rankings. We propose a new approach to search aggregation that takes into account result semantics and explicit searcher preferences in the form of result composition. Our findings suggest that result composition can be an effective search paradigm and can positively impact search behaviour in certain contexts.

References

[1]
Amer-Yahia, S., F. Bonchi, C. Castillo, E. Feuerstein, I. Méndez-Díaz, and P. Zabala (2013). Complexity and algorithms for composite retrieval. In Proceedings of the 22nd international conference on World Wide Web companion, pp. 79--80. International World Wide Web Conferences Steering Committee.
[2]
Arguello, J., F. Diaz, J. Callan, and J.-F. Crespo (2009). Sources of evidence for vertical selection. In Proceedings of the 32nd international ACM SIGIR conference on Research and development in information retrieval, SIGIR '09, pp. 315--322.
[3]
Basu Roy, S., S. Amer-Yahia, A. Chawla, G. Das, and C. Yu (2010). Constructing and exploring composite items. In Proceedings of the 2010 ACM SIGMOD International Conference on Management of data, SIGMOD '10, New York, NY, USA, pp. 843--854. ACM.
[4]
Bota, H., K. Zhou, and J. Jose (2015). Exploring composite retrieval from the users' perspective. In A. Hanbury, G. Kazai, A. Rauber, and N. Fuhr (Eds.), Advances in Information Retrieval, Volume 9022 of Lecture Notes in Computer Science, pp. 13--24. Springer International Publishing.
[5]
Bota, H., K. Zhou, J. M. Jose, and M. Lalmas (2014). Composite retrieval of heterogeneous web search. In Proceedings of the 23rd International Conference on World Wide Web, WWW '14, New York, NY, USA, pp. 119--130. ACM.
[6]
Diaz, F., R. White, G. Buscher, and D. Liebling (2013). Robust models of mouse movement on dynamic web search results pages. ACM CIKM '13, pp. 1451--1460.
[7]
Guo, X., C. Xiao, and Y. Ishikawa (2012). Transactions on large-scale data- and knowledge-centered systems vi. Chapter Combination Skyline Queries, pp. 1--30. Berlin, Heidelberg: Springer-Verlag.
[8]
Koster, M. (1994). Aliweb - archie-like indexing in the web. Computer Networks and ISDN Systems 27 (2), 175--182. Selected Papers of the First World-Wide Web Conference.
[9]
Lagun, D., C.-H. Hsieh, D. Webster, and V. Navalpakkam (2014). Towards better measurement of attention and satisfaction in mobile search. In ACM SIGIR '14, pp. 113--122.
[10]
Navalpakkam, V., L. Jentzsch, R. Sayres, S. Ravi, A. Ahmed, and A. Smola (2013). Measurement and modeling of eye-mouse behavior in the presence of nonlinear page layouts. In ACM WWW '13, pp. 953--964.
[11]
Nguyen, D., T. Demeester, D. Trieschnigg, and D. Hiemstra (2012). Federated search in the wild: the combined power of over a hundred search engines. In Proceedings of the 21st ACM international conference on Information and knowledge management, pp. 1874--1878. ACM.
[12]
Shokouhi, M. and L. Si (2011). Federated search. Foundations and Trends in Information Retrieval 5(1), 1--102.
[13]
Sushmita, S., H. Joho, M. Lalmas, and R. Villa (2010). Factors affecting click-through behavior in aggregated search interfaces. In ACM CIKM '10, pp. 519--528. ACM.
[14]
Tran, Q. T., C.-Y. Chan, and G. Wang (2011). Evaluation of set-based queries with aggregation constraints. In Proceedings of the 20th ACM International Conference on Information and Knowledge Management, CIKM '11, New York, NY, USA, pp. 1495--1504. ACM.
[15]
Xie, M., L. V. Lakshmanan, and P. T. Wood (2010). Breaking out of the box of recommendations: from items to packages. In Proceedings of the fourth ACM conference on Recommender systems, RecSys '10, New York, NY, USA, pp. 151--158. ACM.
[16]
Zhao, B., X. Lin, B. Ding, and J. Han (2011). Texplorer: Keyword-based object search and exploration in multidimensional text databases. In Proceedings of the 20th ACM International Conference on Information and Knowledge Management, CIKM '11, New York, NY, USA, pp. 1709--1718. ACM.
[17]
Zhou, K., R. Cummins, M. Lalmas, and J. M. Jose (2012). Evaluating aggregated search pages. In Proceedings of the 35th international ACM SIGIR conference on Research and development in information retrieval, pp. 115--124. ACM.
  1. Heterogeneous information access through result composition

    Recommendations

    Comments

    Information & Contributors

    Information

    Published In

    cover image Guide Proceedings
    FDIA '15: Proceedings of the 6th Symposium on Future Directions in Information Access
    September 2015
    79 pages

    Publisher

    BCS Learning & Development Ltd.

    Swindon, United Kingdom

    Publication History

    Published: 02 September 2015

    Author Tags

    1. search interfaces
    2. user behaviour
    3. web search

    Qualifiers

    • Research-article

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • 0
      Total Citations
    • 73
      Total Downloads
    • Downloads (Last 12 months)39
    • Downloads (Last 6 weeks)5
    Reflects downloads up to 18 Feb 2025

    Other Metrics

    Citations

    View Options

    View options

    PDF

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    Login options

    Figures

    Tables

    Media

    Share

    Share

    Share this Publication link

    Share on social media