Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
research-article

Association rules with graph patterns

Published: 01 August 2015 Publication History

Abstract

We propose graph-pattern association rules (GPARs) for social media marketing. Extending association rules for item-sets, GPARs help us discover regularities between entities in social graphs, and identify potential customers by exploring social influence. We study the problem of discovering top-k diversified GPARs. While this problem is NP-hard, we develop a parallel algorithm with accuracy bound. We also study the problem of identifying potential customers with GPARs. While it is also NP-hard, we provide a parallel scalable algorithm that guarantees a polynomial speedup over sequential algorithms with the increase of processors. Using real-life and synthetic graphs, we experimentally verify the scalability and effectiveness of the algorithms.

References

[1]
GraMi. https://github.com/ehab-abdelhamid/GraMi.
[2]
Nielsen global online consumer survey. http://www.nielsen.com/content/dam/corporate/us/en/newswire/uploads/2009/07/pr_global-study_07709.pdf.
[3]
Pokec social network. http://snap.stanford.edu/data/soc-pokec.html.
[4]
R. Agrawal, T. Imieliński, and A. Swami. Mining association rules between sets of items in large databases. SIGMOD Record, 22(2):207--216, 1993.
[5]
S. Amer-Yahia, L. V. Lakshmanan, S. Vassilvitskii, and C. Yu. Battling predictability and overconcentration in recommender systems. IEEE Data Eng. Bull., 32(4), 2009.
[6]
M. Berlingerio, F. Bonchi, B. Bringmann, and A. Gionis. Mining graph evolution rules. In Machine learning and knowledge discovery in databases, pages 115--130. 2009.
[7]
B. Bringmann and S. Nijssen. What is frequent in a single graph? In PAKDD, 2008.
[8]
P. Burkhardt and C. Waring. An NSA big graph experiment. Technical Report NSA-RD-2013-056002v1, U.S. National Security Agency, 2013.
[9]
Q. Cao, M. Sirivianos, X. Yang, and T. Pregueiro. Aiding the detection of fake accounts in large scale social online services. In NSDI, pages 197--210, 2012.
[10]
L. P. Cordella, P. Foggia, C. Sansone, and M. Vento. A (sub) graph isomorphism algorithm for matching large graphs. TPAMI, 26(10):1367--1372, 2004.
[11]
X. Dong et al. Knowledge vault: A web-scale approach to probabilistic knowledge fusion. In KDD, 2014.
[12]
A. Dovier, C. Piazza, and A. Policriti. A fast bisimulation algorithm. In CAV, pages 79--90, 2001.
[13]
M. Elseidy, E. Abdelhamid, S. Skiadopoulos, and P. Kalnis. GRAMI: frequent subgraph and pattern mining in a single large graph. PVLDB, 7(7):517--528, 2014.
[14]
W. Fan, F. Geerts, X. Jia, and A. Kementsietsidis. Conditional functional dependencies for capturing data inconsistencies. TODS, 33(1), 2008.
[15]
W. Fan, X. Wang, and Y. Wu. Distributed graph simulation: Impossibility and possibility. PVLDB, 2014.
[16]
P. Fournier-Viger and V. S. Tseng. Mining top-k non-redundant association rules. In ISMIS. 2012.
[17]
L. A. Galárraga, C. Teflioudi, K. Hose, and F. Suchanek. AMIE: association rule mining under incomplete evidence in ontological knowledge bases. In WWW, 2013.
[18]
M. A. Gallego, J. D. Fernández, M. A. Martínez-Prieto, and P. de la Fuente. An empirical study of real-world SPARQL queries. In USEWOD workshop, 2011.
[19]
S. Gollapudi and A. Sharma. An axiomatic approach for result diversification. In WWW, 2009.
[20]
N. Z. Gong et al. Evolution of social-attribute networks: measurements, modeling, and implications using google+. In IMC, 2012.
[21]
I. Grujic, S. Bogdanovic-Dinic, and L. Stoimenov. Collecting and analyzing data from e-government facebook pages. In ICT Innovations, 2014.
[22]
L. B. Holder, D. J. Cook, S. Djoko, et al. Substucture discovery in the subdue system. In KDD workshop, 1994.
[23]
J. Huang, K. Venkatraman, and D. J. Abadi. Query optimization of distributed pattern matching. In ICDE, 2014.
[24]
A. Inokuchi, T. Washio, and H. Motoda. An apriori-based algorithm for mining frequent substructures from graph data. In Principles of Data Mining and Knowledge Discovery. 2000.
[25]
C. Jiang, F. Coenen, and M. Zito. A survey of frequent subgraph mining algorithms. Knowledge Eng. Review, 28(01):75--105, 2013.
[26]
M. Kamber and R. Shinghal. Evaluating the interestingness of characteristic rules. In KDD, pages 263--266, 1996.
[27]
Y. Ke, J. Cheng, and J. X. Yu. Efficient discovery of frequent correlated subgraph pairs. In ICDM, 2009.
[28]
S.-H. Kim, K.-H. Lee, H. Choi, and Y.-J. Lee. Parallel processing of multiple graph queries using MapReduce. In DBKDA, 2013.
[29]
P. Koutris and D. Suciu. Parallel evaluation of conjunctive queries. In PODS, 2011.
[30]
C. P. Kruskal, L. Rudolph, and M. Snir. A complexity theory of efficient parallel algorithms. TCS, 71(1), 1990.
[31]
S. Lallich, O. Teytaud, and E. Prudhomme. Association rule interestingness: Measure and statistical validation. In Quality measures in data mining, pages 251--275. 2007.
[32]
W. Le, A. Kementsietsidis, S. Duan, and F. Li. Scalable multi-query optimization for SPARQL. In ICDE, 2012.
[33]
L. Lü and T. Zhou. Link prediction in complex networks: A survey. Physica A: Statistical Mechanics and its Applications, 390(6):1150--1170, 2011.
[34]
S. A. Myers, C. Zhu, and J. Leskovec. Information diffusion and external influence in networks. In KDD, 2012.
[35]
J. Pei and J. Han. Constrained frequent pattern mining: a pattern-growth view. SIGKDD Explorations, 4(1), 2002.
[36]
F. Rahimian, A. H. Payberah, S. Girdzijauskas, M. Jelasity, and S. Haridi. Ja-be-ja: A distributed algorithm for balanced graph partitioning. In SASO, 2013.
[37]
R. Raman, O. van Rest, S. Hong, Z. Wu, H. Chafi, and J. Banerjee. PGX.ISO: Parallel and efficient in-memory engine for subgraph isomorphism. GRADES, 2014.
[38]
X. Ren and J. Wang. Exploiting vertex relationships in speeding up subgraph isomorphism over large graphs. PVLDB, 8(5):617--628, 2015.
[39]
C. Romero, S. Ventura, and P. De Bra. Knowledge discovery with genetic programming for providing feedback to courseware authors. UMUAI, 14(5):425--464, 2004.
[40]
D. Saha. An incremental bisimulation algorithm. In FSTTCS, 2007.
[41]
C. Schmitz, A. Hotho, R. Jäschke, and G. Stumme. Mining association rules in folksonomies. In Data Science and Classification, pages 261--270. 2006.
[42]
P. Shelokar, A. Quirin, and Ó. Cordón. Three-objective subgraph mining using multiobjective evolutionary programming. JCSS, 80(1):16--26, 2014.
[43]
C. Smith. Twitter users say they use the site to influence their shopping decisions. Business Insider Intelligence, 2013.
[44]
D. Xin, H. Cheng, X. Yan, and J. Han. Extracting redundancy-aware top-k patterns. In KDD, 2006.
[45]
W.-S. Yang, J.-B. Dia, H.-C. Cheng, and H.-T. Lin. Mining social networks for targeted advertising. In HICSS, 2006.
[46]
C. Zhang and S. Zhang. Association rule mining: models and algorithms. 2002.

Cited By

View all
  1. Association rules with graph patterns

    Recommendations

    Comments

    Information & Contributors

    Information

    Published In

    cover image Proceedings of the VLDB Endowment
    Proceedings of the VLDB Endowment  Volume 8, Issue 12
    Proceedings of the 41st International Conference on Very Large Data Bases, Kohala Coast, Hawaii
    August 2015
    728 pages
    ISSN:2150-8097
    Issue’s Table of Contents

    Publisher

    VLDB Endowment

    Publication History

    Published: 01 August 2015
    Published in PVLDB Volume 8, Issue 12

    Qualifiers

    • Research-article

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)30
    • Downloads (Last 6 weeks)2
    Reflects downloads up to 23 Dec 2024

    Other Metrics

    Citations

    Cited By

    View all
    • (2024)Extending Graph Rules with OraclesProceedings of the VLDB Endowment10.14778/3654621.365464117:7(1775-1787)Online publication date: 1-Mar-2024
    • (2024)Capturing More Associations by Referencing External GraphsProceedings of the VLDB Endowment10.14778/3648160.364816217:6(1173-1186)Online publication date: 3-May-2024
    • (2024)Discovering Top-k Relevant and Diversified RulesProceedings of the ACM on Management of Data10.1145/36771312:4(1-28)Online publication date: 30-Sep-2024
    • (2024)Mining Path Association Rules in Large Property GraphsProceedings of the 33rd ACM International Conference on Information and Knowledge Management10.1145/3627673.3679525(1994-2003)Online publication date: 21-Oct-2024
    • (2024)Reasoning on property graphs with graph generating dependenciesInformation Sciences: an International Journal10.1016/j.ins.2024.120675672:COnline publication date: 1-Jun-2024
    • (2024)PG-FD: Mapping Functional Dependencies to the Future Property Graph Schema StandardAdvances in Databases and Information Systems10.1007/978-3-031-70626-4_4(45-59)Online publication date: 28-Aug-2024
    • (2023)Enriching Recommendation Models with Logic ConditionsProceedings of the ACM on Management of Data10.1145/36173301:3(1-28)Online publication date: 13-Nov-2023
    • (2023)Discovering Top-k Rules using Subjective and Objective CriteriaProceedings of the ACM on Management of Data10.1145/35889241:1(1-29)Online publication date: 30-May-2023
    • (2023)MaNIACS: Approximate Mining of Frequent Subgraph Patterns through SamplingACM Transactions on Intelligent Systems and Technology10.1145/358725414:3(1-29)Online publication date: 13-Apr-2023
    • (2023)Event Association Analysis Using Graph RulesArtificial Neural Networks and Machine Learning – ICANN 202310.1007/978-3-031-44216-2_29(352-363)Online publication date: 26-Sep-2023
    • Show More Cited By

    View Options

    Login options

    Full Access

    View options

    PDF

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    Media

    Figures

    Other

    Tables

    Share

    Share

    Share this Publication link

    Share on social media