Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.1609/aaai.v33i01.33019780guideproceedingsArticle/Chapter ViewAbstractPublication PagesConference Proceedingsacm-pubtype
research-article
Free access

Meaningful explanations of black box AI decision systems

Published: 27 January 2019 Publication History

Abstract

Black box AI systems for automated decision making, often based on machine learning over (big) data, map a user's features into a class or a score without exposing the reasons why. This is problematic not only for lack of transparency, but also for possible biases inherited by the algorithms from human prejudices and collection artifacts hidden in the training data, which may lead to unfair or wrong decisions. We focus on the urgent open challenge of how to construct meaningful explanations of opaque AI/ML systems, introducing the local-to-global framework for black box explanation, articulated along three lines: (i) the language for expressing explanations in terms of logic rules, with statistical and causal interpretation; (ii) the inference of local explanations for revealing the decision rationale for a specific case, by auditing the black box in the vicinity of the target instance; (iii), the bottom-up generalization of many local explanations into simple global ones, with algorithms that optimize for quality and comprehensibility. We argue that the local-first approach opens the door to a wide variety of alternative solutions along different dimensions: a variety of data sources (relational, text, images, etc.), a variety of learning problems (multi-label classification, regression, scoring, ranking), a variety of languages for expressing meaningful explanations, a variety of means to audit a black box.

References

[1]
Andrews, R.; Diederich, J.; and Tickle, A. B. 1995. Survey and critique of techniques for extracting rules from trained artificial neural networks. Knowl.-Based Syst. 8(6):373–389.
[2]
Augasta, M. G., and Kathirvalavakumar, T. 2012. Reverse engineering the neural networks for rule extraction in classification problems. NPL 35(2):131–150.
[3]
Bareinboim, E., and Pearl, J. 2016. Causal inference and the data-fusion problem. PNAS 113(27):7345–7352.
[4]
Bonchi, F.; Giannotti, F.; Mainetto, G.; and Pedreschi, D. 1999. A classification-based methodology for planning audit strategies in fraud detection. In KDD, 175–184. ACM.
[5]
Bonchi, F.; Hajian, S.; Mishra, B.; and Ramazzotti, D. 2017. Exposing the probabilistic causal structure of discrimination. IJDSA 3(1):1–21.
[6]
Caliskan, A.; Bryson, J. J.; and Narayanan, A. 2017. Semantics derived automatically from language corpora contain human-like biases. Science 356:183–186.
[7]
Caravagna, G.; Graudenzi, A.; Ramazzotti, D.; Sanz-Pamplona, R.; De Sano, L.; Mauri, G.; Moreno, V.; Antoniotti, M.; and Mishra, B. 2016. Algorithmic methods to infer the evolutionary trajectories in cancer progression. PNAS 113(28):E4025–E4034.
[8]
Choi, E.; Bahadori, M. T.; Schuetz, A.; Stewart, W. F.; and Sun, J. 2016. Doctor AI: Predicting clinical events via recurrent neural networks. In PMLR, 301–318.
[9]
Craven, M., and Shavlik, J. W. 1995. Extracting tree-structured representations of trained networks. In NIPS, 24–30.
[10]
Danks, D., and London, A. J. 2017. Regulating autonomous systems: Beyond standards. IEEE IS 32(1):88–91.
[11]
Fung, G.; Sandilya, S.; and Rao, R. B. 2005. Rule extraction from linear support vector machines. In KDD, 32–40. ACM.
[12]
Goodman, B., and Flaxman, S. 2016. EU regulations on algorithmic decision-making and a "right to explanation". In ICML.
[13]
Guidotti, R.; Monreale, A.; Ruggieri, S.; Pedreschi, D.; Turini, F.; and Giannotti, F. 2018a. Local rule-based explanations of black box decision systems. arXiv:1805.10820.
[14]
Guidotti, R.; Monreale, A.; Ruggieri, S.; Turini, F.; Giannotti, F.; and Pedreschi, D. 2018b. A survey of methods for explaining black box models. CSUR 51(5):93:1–93:42.
[15]
Henelius, A.; Puolamäki, K.; Boström, H.; Asker, L.; and Papapetrou, P. 2014. A peek into the black box: exploring classifiers by randomization. DAMI 28(5-6):1503–1529.
[16]
Huang, B.; Zhang, K.; Lin, Y.; Scholkopf, B.; and Glymour, C. 2018. Generalized score functions for causal discovery. In KDD, 1551–1560. ACM.
[17]
Johnson, A. E. W.; Pollard, T. J.; Shen, L.; Lehman, L. H.; Feng, M.; Ghassemi, M.; Moody, B.; Szolovits, P.; Celi, L. A.; and Mark, R. G. 2016. MIMIC-III, a freely accessible critical care database. Scientific Data 3:160035.
[18]
Kingston, J. K. C. 2016. Artificial intelligence and legal liability. In SGAI Conf., 269–279. Springer.
[19]
Krause, J.; Perer, A.; and Ng, K. 2016. Interacting with predictions: Visual inspection of black-box machine learning models. In CHI, 5686–5697. New York, NY, USA: ACM.
[20]
Krishnan, R.; Sivakumar, G.; and Bhattacharya, P. 1999. Extracting decision trees from trained neural networks. Pattern recognition 32(12).
[21]
Kroll, J. A.; Huey, J.; Barocas, S.; Felten, E. W.; Reidenberg, J. R.; Robinson, D. G.; and Yu, H. 2017. Accountable algorithms. U. of Penn. Law Review 165:633–705.
[22]
Lakkaraju, H.; Bach, S. H.; and Leskovec, J. 2016. Interpretable decision sets: A joint framework for description and prediction. In KDD, 1675–1684. ACM.
[23]
Leake, D. B. 1992. Evaluating explanations: A content theory. Lawrence Erlbaum Associates.
[24]
Lou, Y.; Caruana, R.; and Gehrke, J. 2012. Intelligible models for classification and regression. In KDD, 150–158. ACM.
[25]
Malgieri, G., and Comandé, G. 2017. Why a right to legibility of automated decision-making exists in the general data protection regulation. IDPL 7(4):243–265.
[26]
Malioutov, D.; Varshney, K. R.; Emad, A.; and Dash, S. 2017. Learning interpretable classification rules with boolean compressed sensing. In Transparent Data Mining for Big and Small Data. Springer. 95–121.
[27]
Nanni, M.; Trasarti, R.; Monreale, A.; Grossi, V.; and Pedreschi, D. 2016. Driving profiles computation and monitoring for car insurance CRM. ACM Trans. Intell. Syst. Technol. 8(1):14:1–14:26.
[28]
Nugent, C., and Cunningham, P. 2005. A case-based explanation system for black-box systems. AIR 24(2):163–178.
[29]
Pasquale, F. 2015. The black box society: The secret algorithms that control money and information. HUP.
[30]
Pearl, J., and MacKenzie, D. 2018. The Book of Why: the new science of cause and effect. Basic Books.
[31]
Pedreschi, D.; Giannotti, F.; Guidotti, R.; Monreale, A.; Pappalardo, L.; Ruggieri, S.; and Turini, F. 2018. Open the black box data-driven explanation of black box decision systems. arXiv:1806.09936.
[32]
Pedreschi, D.; Ruggieri, S.; and Turini, F. 2008. Discrimination-aware data mining. In KDD, 560. ACM.
[33]
Peters, J.; Janzing, D.; and Scholkopf, B. 2017. Elements of causal inference: foundations and learning algorithms. MIT Press.
[34]
Ribeiro, M. T.; Singh, S.; and Guestrin, C. 2016. Why should i trust you?: Explaining the predictions of any classifier. In KDD, 1135–1144. ACM.
[35]
Ribeiro, M. T.; Singh, S.; and Guestrin, C. 2018. Anchors: High-precision model-agnostic explanations. In AAAI, 1527–1535.
[36]
Ruggieri, S.; Pedreschi, D.; and Turini, F. 2010. Data mining for discrimination discovery. TKDD 4(2):9:1–9:40.
[37]
Singh, J., and Anand, A. 2018. Exs: Explainable search using local model agnostic interpretability. arXiv:1809.03857.
[38]
Tan, H. F.; Hooker, G.; and Wells, M. T. 2016. Tree space prototypes: Another look at making tree ensembles interpretable. arXiv:1611.07115.
[39]
Xu, K.; Ba, J.; Kiros, R.; Cho, K.; Courville, A.; Salakhutdinov, R.; Zemel, R.; and Bengio, Y. 2015. Show, attend and tell: Neural image caption generation with visual attention. In ICML, 2048.
[40]
Zhang, J., and Bareinboim, E. 2018. Fairness in decision-making: The causal explanation formula. In AAAI, 2037.
[41]
Zhou, B.; Khosla, A.; Lapedriza, A.; Oliva, A.; and Torralba, A. 2016. Learning deep features for discriminative localization. In CVPR, 2921–2929. IEEE.

Cited By

View all
  • (2024)Advancing Certified Robustness of Explanation via Gradient QuantizationProceedings of the 33rd ACM International Conference on Information and Knowledge Management10.1145/3627673.3679650(2596-2606)Online publication date: 21-Oct-2024
  • (2024)Novel diversified echo state network for improved accuracy and explainability of EEG-based stroke predictionInformation Systems10.1016/j.is.2023.102317120:COnline publication date: 1-Feb-2024
  • (2023)Supporting High-Uncertainty Decisions through AI and Logic-Style ExplanationsProceedings of the 28th International Conference on Intelligent User Interfaces10.1145/3581641.3584080(251-263)Online publication date: 27-Mar-2023
  • Show More Cited By

Index Terms

  1. Meaningful explanations of black box AI decision systems
          Index terms have been assigned to the content through auto-classification.

          Recommendations

          Comments

          Information & Contributors

          Information

          Published In

          cover image Guide Proceedings
          AAAI'19/IAAI'19/EAAI'19: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence and Thirty-First Innovative Applications of Artificial Intelligence Conference and Ninth AAAI Symposium on Educational Advances in Artificial Intelligence
          January 2019
          10088 pages
          ISBN:978-1-57735-809-1

          Sponsors

          • Association for the Advancement of Artificial Intelligence

          Publisher

          AAAI Press

          Publication History

          Published: 27 January 2019

          Qualifiers

          • Research-article
          • Research
          • Refereed limited

          Contributors

          Other Metrics

          Bibliometrics & Citations

          Bibliometrics

          Article Metrics

          • Downloads (Last 12 months)58
          • Downloads (Last 6 weeks)10
          Reflects downloads up to 27 Jan 2025

          Other Metrics

          Citations

          Cited By

          View all
          • (2024)Advancing Certified Robustness of Explanation via Gradient QuantizationProceedings of the 33rd ACM International Conference on Information and Knowledge Management10.1145/3627673.3679650(2596-2606)Online publication date: 21-Oct-2024
          • (2024)Novel diversified echo state network for improved accuracy and explainability of EEG-based stroke predictionInformation Systems10.1016/j.is.2023.102317120:COnline publication date: 1-Feb-2024
          • (2023)Supporting High-Uncertainty Decisions through AI and Logic-Style ExplanationsProceedings of the 28th International Conference on Intelligent User Interfaces10.1145/3581641.3584080(251-263)Online publication date: 27-Mar-2023
          • (2023)"Help Me Help the AI": Understanding How Explainability Can Support Human-AI InteractionProceedings of the 2023 CHI Conference on Human Factors in Computing Systems10.1145/3544548.3581001(1-17)Online publication date: 19-Apr-2023
          • (2023)21st Century teaming and beyondComputers in Human Behavior10.1016/j.chb.2023.107865147:COnline publication date: 1-Oct-2023
          • (2023)From black box to clear boxApplied Soft Computing10.1016/j.asoc.2023.110729146:COnline publication date: 17-Oct-2023
          • (2023)RELAX: Representation Learning ExplainabilityInternational Journal of Computer Vision10.1007/s11263-023-01773-2131:6(1584-1610)Online publication date: 11-Mar-2023
          • (2022)Examining and Promoting Explainable Recommendations for Personal Sensing Technology AcceptanceProceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies10.1145/35502976:3(1-27)Online publication date: 7-Sep-2022
          • (2022)Establishing Data Provenance for Responsible Artificial Intelligence SystemsACM Transactions on Management Information Systems10.1145/350348813:2(1-23)Online publication date: 10-Mar-2022
          • (2022)An end-to-end framework for information extraction from Italian resumesExpert Systems with Applications: An International Journal10.1016/j.eswa.2022.118487210:COnline publication date: 30-Dec-2022
          • Show More Cited By

          View Options

          View options

          PDF

          View or Download as a PDF file.

          PDF

          eReader

          View online with eReader.

          eReader

          Login options

          Figures

          Tables

          Media

          Share

          Share

          Share this Publication link

          Share on social media