Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.1609/aaai.v37i2.25354guideproceedingsArticle/Chapter ViewAbstractPublication PagesConference Proceedingsacm-pubtype
research-article

Robust video portrait reenactment via personalized representation quantization

Published: 07 February 2023 Publication History

Abstract

While progress has been made in the field of portrait reenactment, the problem of how to produce high-fidelity and robust videos remains. Recent studies normally find it challenging to handle rarely seen target poses due to the limitation of source data. This paper proposes the Video Portrait via Non-local Quantization Modeling (VPNQ) framework, which produces pose-and disturbance-robust reenactable video portraits. Our key insight is to learn position-invariant quantized local patch representations, then build a mapping between simple driving signals and local textures with non-local spatial-temporal modeling. Specifically, instead of learning a universal quantized codebook, we identify that a personalized one can be trained to preserve desired position-invariant local details. Then, a simple representation of projected landmarks can be used as sufficient driving signals to avoid 3D rendering. In the following, we employ a carefully designed Spatio-Temporal Transformer to predict reasonable and temporally consistent quantized tokens from the driving signal. The predicted codes can be decoded back to robust and high-quality videos. Comprehensive experiments have been conducted to validate the effectiveness of our approach.

References

[1]
Bao, H.; Dong, L.; and Wei, F. 2021. Beit: Bert pre-training of image transformers. arXiv preprint arXiv:2106.08254.
[2]
Blanz, V.; and Vetter, T. 1999. A morphable model for the synthesis of 3D faces. In Proceedings of the 26th annual conference on Computer graphics and interactive techniques, 187-194.
[3]
Chang, H.; Zhang, H.; Jiang, L.; Liu, C.; and Freeman, W. T. 2022. MaskGIT: Masked Generative Image Transformer. arXiv preprint arXiv:2202.04200.
[4]
Devlin, J.; Chang, M.-W.; Lee, K.; and Toutanova, K. 2018. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805.
[5]
Dosovitskiy, A.; Beyer, L.; Kolesnikov, A.; Weissenborn, D.; Zhai, X.; Unterthiner, T.; Dehghani, M.; Minderer, M.; Heigold, G.; Gelly, S.; et al. 2021. An image is worth 16x16 words: Transformers for image recognition at scale. ICLR.
[6]
Doukas, M. C.; Zafeiriou, S.; and Sharmanska, V. 2020. HeadGAN: Video-and-Audio-Driven Talking Head Synthesis. arXiv preprint arXiv:2012.08261.
[7]
Esser, P.; Rombach, R.; Blattmann, A.; and Ommer, B. 2021. Imagebart: Bidirectional context with multinomial diffusion for autoregressive image synthesis. Advances in Neural Information Processing Systems, 34.
[8]
Esser, P.; Rombach, R.; and Ommer, B. 2021. Taming transformers for high-resolution image synthesis. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 12873-12883.
[9]
Feng, Y.; Feng, H.; Black, M. J.; and Bolkart, T. 2021. Learning an Animatable Detailed 3D Face Model from In-The-Wild Images. volume 40.
[10]
Gafni, G.; Thies, J.; Zollhofer, M.; and Nießner, M. 2021. Dynamic neural radiance fields for monocular 4d facial avatar reconstruction. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 8649-8658.
[11]
Grassal, P.-W.; Prinzler, M.; Leistner, T.; Rother, C.; Nießner, M.; and Thies, J. 2022. Neural head avatars from monocular RGB videos. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 18653-18664.
[12]
Gu, Y.; Wang, X.; Xie, L.; Dong, C.; Li, G.; Shan, Y.; and Cheng, M.-M. 2022. VQFR: Blind Face Restoration with Vector-Quantized Dictionary and Parallel Decoder. In ECCV.
[13]
Guo, Y.; Chen, K.; Liang, S.; Liu, Y.; Bao, H.; and Zhang, J. 2021. AD-NeRF: Audio Driven Neural Radiance Fields for Talking Head Synthesis. In IEEE/CVF International Conference on Computer Vision (ICCV).
[14]
Hong, W.; Ding, M.; Zheng, W.; Liu, X.; and Tang, J. 2022. CogVideo: Large-scale Pretraining for Text-to-Video Generation via Transformers. arXiv preprint arXiv:2205.15868.
[15]
Isola, P.; Zhu, J.-Y.; Zhou, T.; and Efros, A. A. 2017. Image-to-Image Translation with Conditional Adversarial Networks. CVPR.
[16]
Ji, X.; Zhou, H.; Wang, K.; Wu, Q.; Wu, W.; Xu, F.; and Cao, X. 2022. Eamm: One-shot emotional talking face via audio-based emotion-aware motion model. In ACM SIGGRAPH 2022 Conference Proceedings, 1-10.
[17]
Ji, X.; Zhou, H.; Wang, K.; Wu, W.; Loy, C. C.; Cao, X.; and Xu, F. 2021. Audio-driven emotional video portraits. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 14080-14089.
[18]
Kim, H.; Elgharib, M.; Zollhöfer, M.; Seidel, H.-P.; Beeler, T.; Richardt, C.; and Theobalt, C. 2019. Neural style-preserving visual dubbing. ACM Transactions on Graphics (TOG), 38(6): 1-13.
[19]
Kim, H.; Garrido, P.; Tewari, A.; Xu, W.; Thies, J.; Niessner, M.; Pérez, P.; Richardt, C.; Zollhöfer, M.; and Theobalt, C. 2018. Deep video portraits. ACM Transactions on Graphics (TOG), 37(4): 1-14.
[20]
Lahiri, A.; Kwatra, V.; Frueh, C.; Lewis, J.; and Bregler, C. 2021. LipSync3D: Data-Efficient Learning of Personalized 3D Talking Faces from Video using Pose and Lighting Normalization. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2755-2764.
[21]
Li, L.; Wang, S.; Zhang, Z.; Ding, Y.; Zheng, Y.; Yu, X.; and Fan, C. 2021. Write-a-speaker: Text-based Emotional and Rhythmic Talking-head Generation. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 35, 1911-1920.
[22]
Lu, Y.; Chai, J.; and Cao, X. 2021. Live speech portraits: real-time photorealistic talking-head animation. ACM Transactions on Graphics (TOG), 40(6): 1-17.
[23]
Mildenhall, B.; Srinivasan, P. P.; Tancik, M.; Barron, J. T.; Ramamoorthi, R.; and Ng, R. 2020. Nerf: Representing scenes as neural radiance fields for view synthesis. In European conference on computer vision, 405-421. Springer.
[24]
Oord, A. v. d.; Li, Y.; and Vinyals, O. 2018. Representation learning with contrastive predictive coding. arXiv preprint arXiv:1807.03748.
[25]
Siarohin, A.; Lathuilière, S.; Tulyakov, S.; Ricci, E.; and Sebe, N. 2019. First order motion model for image animation. Advances in Neural Information Processing Systems, 32: 7137-7147.
[26]
Suwajanakorn, S.; Seitz, S. M.; and Kemelmacher-Shlizerman, I. 2017. Synthesizing obama: learning lip sync from audio. ACM Transactions on Graphics (ToG), 36(4): 1-13.
[27]
Thies, J.; Elgharib, M.; Tewari, A.; Theobalt, C.; and Nießner, M. 2020. Neural voice puppetry: Audio-driven facial reenactment. In European Conference on Computer Vision, 716-731. Springer.
[28]
Van Den Oord, A.; Vinyals, O.; et al. 2017. Neural discrete representation learning. Advances in neural information processing systems, 30.
[29]
Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A. N.; Kaiser, Ł.; and Polosukhin, I. 2017. Attention is all you need. Advances in neural information processing systems, 30.
[30]
Wang, T.-C.; Liu, M.-Y.; Zhu, J.-Y.; Tao, A.; Kautz, J.; and Catanzaro, B. 2018. High-Resolution Image Synthesis and Semantic Manipulation with Conditional GANs. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.
[31]
Wang, T.-C.; Mallya, A.; and Liu, M.-Y. 2021. One-shot free-view neural talking-head synthesis for video conferencing. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, 10039-10049.
[32]
Wang, Y.; Yang, D.; Bremond, F.; and Dantcheva, A. 2022. Latent Image Animator: Learning to Animate Images via Latent Space Navigation. arXiv preprint arXiv:2203.09043.
[33]
Zakharov, E.; Ivakhnenko, A.; Shysheya, A.; and Lempitsky, V. 2020. Fast Bi-layer Neural Synthesis of One-Shot Realistic Head Avatars. In European Conference on Computer Vision, 524-540. Springer.
[34]
Zakharov, E.; Shysheya, A.; Burkov, E.; and Lempitsky, V. 2019. Few-shot adversarial learning of realistic neural talking head models. In Proceedings of the IEEE/CVF international conference on computer vision, 9459-9468.
[35]
Zhang, Z.; Li, L.; Ding, Y.; and Fan, C. 2021. Flow-Guided One-Shot Talking Face Generation With a High-Resolution Audio-Visual Dataset. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 3661-3670.
[36]
Zheng, Y.; Abrevaya, V. F.; Buhler, M. C.; Chen, X.; Black, M. J.; and Hilliges, O. 2022. Im avatar: Implicit morphable head avatars from videos. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 13545-13555.
[37]
Zhou, H.; Liu, Y.; Liu, Z.; Luo, P.; and Wang, X. 2019. Talking face generation by adversarially disentangled audiovisual representation. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 33, 9299-9306.
[38]
Zhou, H.; Sun, Y.; Wu, W.; Loy, C. C.; Wang, X.; and Liu, Z. 2021. Pose-controllable talking face generation by implicitly modularized audio-visual representation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 4176-4186.
[39]
Zhou, S.; Chan, K. C.; Li, C.; and Loy, C. C. 2022. Towards Robust Blind Face Restoration with Codebook Lookup TransFormer. arXiv preprint arXiv:2206.11253.

Recommendations

Comments

Information & Contributors

Information

Published In

cover image Guide Proceedings
AAAI'23/IAAI'23/EAAI'23: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence and Thirty-Fifth Conference on Innovative Applications of Artificial Intelligence and Thirteenth Symposium on Educational Advances in Artificial Intelligence
February 2023
16496 pages
ISBN:978-1-57735-880-0

Sponsors

  • Association for the Advancement of Artificial Intelligence

Publisher

AAAI Press

Publication History

Published: 07 February 2023

Qualifiers

  • Research-article
  • Research
  • Refereed limited

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • 0
    Total Citations
  • 0
    Total Downloads
  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 25 Jan 2025

Other Metrics

Citations

View Options

View options

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media