Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.1609/aaai.v38i13.29372guideproceedingsArticle/Chapter ViewAbstractPublication PagesConference Proceedingsacm-pubtype
research-article

CrystalBox: future-based explanations for input-driven deep RL systems

Published: 20 February 2024 Publication History

Abstract

We present CrystalBox, a novel, model-agnostic, posthoc explainability framework for Deep Reinforcement Learning (DRL) controllers in the large family of input-driven environments which includes computer systems. We combine the natural decomposability of reward functions in input-driven environments with the explanatory power of decomposed returns. We propose an efficient algorithm to generate future-based explanations across both discrete and continuous control environments. Using applications such as adaptive bitrate streaming and congestion control, we demonstrate Crystal-Box's capability to generate high-fidelity explanations. We further illustrate its higher utility across three practical use cases: contrastive explanations, network observability, and guided reward design, as opposed to prior explainability techniques that identify salient features.

References

[1]
Anderson, A.; Dodge, J.; Sadarangani, A.; Juozapaitis, Z.; Newman, E.; Irvine, J.; Chattopadhyay, S.; Fern, A.; and Burnett, M. 2019. Explaining reinforcement learning to mere mortals: An empirical study. arXiv preprint arXiv:1903.09708.
[2]
Bastani, O.; Pu, Y.; and Solar-Lezama, A. 2018. Verifiable reinforcement learning via policy extraction. Advances in neural information processing systems, 31.
[3]
Beattie, C.; Leibo, J. Z.; Teplyashin, D.; Ward, T.; Wainwright, M.; Kuttler, H.; Lefrancq, A.; Green, S.; Valdés, V.; Sadik, A.; et al. 2016. Deepmind lab. arXiv preprint arXiv:1612.03801.
[4]
Brockman, G.; Cheung, V.; Pettersson, L.; Schneider, J.; Schulman, J.; Tang, J.; and Zaremba, W. 2016. Openai gym. arXiv preprint arXiv:1606.01540.
[5]
Browne, C. B.; Powley, E.; Whitehouse, D.; Lucas, S. M.; Cowling, P. I.; Rohlfshagen, P.; Tavener, S.; Perez, D.; Samothrakis, S.; and Colton, S. 2012. A survey of monte carlo tree search methods. IEEE Transactions on Computational Intelligence and AI in games, 4(1): 1-43.
[6]
Burkart, N.; and Huber, M. F. 2021. A survey on the explainability of supervised machine learning. Journal of Artificial Intelligence Research, 70: 245-317.
[7]
Chen, L.; Lingys, J.; Chen, K.; and Liu, F. 2018. Auto: Scaling deep reinforcement learning for datacenter-scale automatic traffic optimization. In Proceedings of the 2018 conference of the ACM special interest group on data communication, 191-205.
[8]
Cruz, F.; Dazeley, R.; Vamplew, P.; and Moreira, I. 2021. Explainable robotic systems: Understanding goal-driven actions in a reinforcement learning scenario. Neural Computing and Applications, 1-18.
[9]
Doshi-Velez, F.; Kortz, M.; Budish, R.; Bavitz, C.; Gershman, S.; O'Brien, D.; Scott, K.; Schieber, S.; Waldo, J.; Weinberger, D.; et al. 2017. Accountability of AI under the law: The role of explanation. arXiv preprint arXiv:1711.01134.
[10]
Greydanus, S.; Koul, A.; Dodge, J.; and Fern, A. 2018. Visualizing and understanding atari agents. In International conference on machine learning, 1792-1801. PMLR.
[11]
Holkar, K.; and Waghmare, L. M. 2010. An overview of model predictive control. International Journal of control and automation, 3(4): 47-63.
[12]
Iyer, R.; Li, Y.; Li, H.; Lewis, M.; Sundar, R.; and Sycara, K. 2018. Transparency and explanation in deep reinforcement learning neural networks. In Proceedings of the 2018 AAAI/ACM Conference on AI, Ethics, and Society, 144-150.
[13]
Jay, N.; Rotman, N.; Godfrey, B.; Schapira, M.; and Tamar, A. 2019. A deep reinforcement learning perspective on internet congestion control. In International conference on machine learning, 3050-3059. PMLR.
[14]
Juozapaitis, Z.; Koul, A.; Fern, A.; Erwig, M.; and Doshi-Velez, F. 2019. Explainable reinforcement learning via reward decomposition. In IJCAI/ECAI Workshop on explainable artificial intelligence.
[15]
Krishnan, S.; Yang, Z.; Goldberg, K.; Hellerstein, J.; and Stoica, I. 2018. Learning to optimize join queries with deep reinforcement learning. arXiv preprint arXiv:1808.03196.
[16]
Lyle, C.; Rowland, M.; Ostrovski, G.; and Dabney, W. 2021. On the effect of auxiliary tasks on representation dynamics. In International Conference on Artificial Intelligence and Statistics, 1-9. PMLR.
[17]
Mao, H.; Negi, P.; Narayan, A.; Wang, H.; Yang, J.; Wang, H.; Marcus, R.; Khani Shirkoohi, M.; He, S.; Nathan, V.; et al. 2019. Park: An open platform for learning-augmented computer systems. Advances in Neural Information Processing Systems, 32.
[18]
Mao, H.; Netravali, R.; and Alizadeh, M. 2017. Neural adaptive video streaming with pensieve. In Proceedings of the Conference of the ACM Special Interest Group on Data Communication, 197-210.
[19]
Mao, H.; Venkatakrishnan, S. B.; Schwarzkopf, M.; and Alizadeh, M. 2018. Variance reduction for reinforcement learning in input-driven environments. arXiv preprint arXiv:1807.02264.
[20]
Meng, Z.; Wang, M.; Bai, J.; Xu, M.; Mao, H.; and Hu, H. 2020. Interpreting deep learning-based networking systems. In Proceedings of the Annual conference of the ACM Special Interest Group on Data Communication on the applications, technologies, architectures, and protocols for computer communication, 154-171.
[21]
Miller, T. 2019. Explanation in artificial intelligence: Insights from the social sciences. Artificial intelligence, 267: 1-38.
[22]
Mittelstadt, B.; Russell, C.; and Wachter, S. 2019. Explaining explanations in AI. In Proceedings of the conference on fairness, accountability, and transparency, 279-288.
[23]
Mok, R. K.; Chan, E. W.; and Chang, R. K. 2011. Measuring the quality of experience of HTTP video streaming. In 12th IFIP/IEEE International Symposium on Integrated Network Management (IM 2011) and Workshops, 485-492. IEEE.
[24]
Patel, S.; Jyothi, S. A.; and Narodytska, N. 2023. CrystalBox: Future-Based Explanations for DRL Network Controllers. arXiv:2302.13483.
[25]
Patel, S.; Zhang, J.; Jyothi, S. A.; and Narodytska, N. 2023. Plume: A Framework for High Performance Deep RL Network Controllers via Prioritized Trace Sampling. arXiv:2302.12403.
[26]
Puri, N.; Verma, S.; Gupta, P.; Kayastha, D.; Deshmukh, S.; Krishnamurthy, B.; and Singh, S. 2019. Explain your move: Understanding agent actions using specific and relevant feature attribution. arXiv preprint arXiv:1912.12191.
[27]
Ribeiro, M. T.; Singh, S.; and Guestrin, C. 2016. " Why should i trust you?" Explaining the predictions of any classifier. In Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and data mining, 1135-1144.
[28]
Rotman, N. H.; Schapira, M.; and Tamar, A. 2020. Online safety assurance for learning-augmented systems. In Proceedings of the 19th ACM Workshop on Hot Topics in Networks, 88-95.
[29]
Silver, D. 2015. Lectures on Reinforcement Learning. https://www.davidsilver.uk/teaching/. Accessed: 2022-10-12.
[30]
Sutton, R. S.; and Barto, A. G. 2018. Reinforcement learning: An introduction. MIT press.
[31]
van der Waa, J.; van Diggelen, J.; Bosch, K. v. d.; and Neerincx, M. 2018. Contrastive explanations for reinforcement learning in terms of expected consequences. arXiv preprint arXiv:1807.08706.
[32]
Verma, A.; Murali, V.; Singh, R.; Kohli, P.; and Chaudhuri, S. 2018. Programmatically interpretable reinforcement learning. In International Conference on Machine Learning, 5045-5054. PMLR.
[33]
Yan, F. Y.; Ayers, H.; Zhu, C.; Fouladi, S.; Hong, J.; Zhang, K.; Levis, P.; and Winstein, K. 2020. Learning in situ: a randomized experiment in video streaming. In 17th USENIX Symposium on Networked Systems Design and Implementation (NSDI20), 495-511.
[34]
Yau, H.; Russell, C.; and Hadfield, S. 2020. What did you think would happen? explaining agent behaviour through intended outcomes. Advances in Neural Information Processing Systems, 33: 18375-18386.
[35]
Zahavy, T.; Ben-Zrihem, N.; and Mannor, S. 2016. Graying the black box: Understanding dqns. In International conference on machine learning, 1899-1908. PMLR.
[36]
Zhang, H.; Zhou, A.; and Lin, X. 2020. Interpretable policy derivation for reinforcement learning based on evolutionary feature synthesis. Complex & Intelligent Systems, 6(3): 741-753.

Recommendations

Comments

Information & Contributors

Information

Published In

cover image Guide Proceedings
AAAI'24/IAAI'24/EAAI'24: Proceedings of the Thirty-Eighth AAAI Conference on Artificial Intelligence and Thirty-Sixth Conference on Innovative Applications of Artificial Intelligence and Fourteenth Symposium on Educational Advances in Artificial Intelligence
February 2024
23861 pages
ISBN:978-1-57735-887-9

Sponsors

  • Association for the Advancement of Artificial Intelligence

Publisher

AAAI Press

Publication History

Published: 20 February 2024

Qualifiers

  • Research-article
  • Research
  • Refereed limited

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • 0
    Total Citations
  • 0
    Total Downloads
  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 31 Jan 2025

Other Metrics

Citations

View Options

View options

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media