Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.1609/aaai.v38i20.30237guideproceedingsArticle/Chapter ViewAbstractPublication PagesConference Proceedingsacm-pubtype
research-article

IndicCONAN: a multilingual dataset for combating hate speech in indian context

Published: 20 February 2024 Publication History

Abstract

Hate speech (HS) is a growing concern in many parts of the world, including India, where it has led to numerous instances of violence and discrimination. The development of effective counter-narratives (CNs) is a critical step in combating hate speech, but there is a lack of research in this area, especially in non-English languages. In this paper, we introduce a new dataset, IndicCONAN, of counter-narratives against hate speech in Hindi and Indian English. We propose a scalable human-in-the-loop approach for generating counter-narratives by an auto-regressive language model through machine generation - human correction cycle, where the model uses augmented data from previous cycles to generate new training samples. These newly generated samples are then reviewed and edited by annotators, leading to further model refinement. The dataset consists of over 2,500 examples of counter-narratives each in both English and Hindi corresponding to various hate speeches in the Indian context. We also present a framework for generating CNs conditioned on specific CN type with a mean perplexity of 3.85 for English and 3.70 for Hindi, a mean toxicity score of 0.04 for English and 0.06 for Hindi, and a mean diversity of 0.08 for English and 0.14 for Hindi. Our dataset and framework provide valuable resources for researchers and practitioners working to combat hate speech in the Indian context.

References

[1]
Bhardwaj, M.; Akhtar, M. S.; Ekbal, A.; Das, A.; and Chakraborty, T. 2020. Hostility Detection Dataset in Hindi. arXiv:2011.03588.
[2]
Bonaldi, H.; Dellantonio, S.; Tekiroglu, S. S.; and Guerini, M. 2022. Human-Machine Collaboration Approaches to Build a Dialogue Dataset for Hate Speech Countering. In Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing, 8031-8049. Association for Computational Linguistics.
[3]
Chinmayi, A.; and Nakul, N. 2016. Preliminary Findings on Online Hate Speech and the Law in India.
[4]
Chung, Y.-L.; Kuzmenko, E.; Tekiroglu, S. S.; and Guerini, M. 2019. CONAN - COunter NArratives through Nichesourcing: a Multilingual Dataset of Responses to Fight Online Hate Speech. In Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, 2819-2829. Florence, Italy: Association for Computational Linguistics.
[5]
Chung, Y.-L.; Tekiroğlu, S. S.; and Guerini, M. 2021. Towards Knowledge-Grounded Counter Narrative Generation for Hate Speech. In Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021, 899-914. Online: Association for Computational Linguistics.
[6]
Fanton, Margherita. 2021. Human-in-the-Loop for Data Collection: a Multi-Target Counter Narrative Dataset to Fight Online Hate Speech. In Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics.
[7]
Hangartner, D.; Gennaro, G.; Alasiri, S.; Bahrich, N.; Bornhoft, A.; Boucher, J.; Demirci, B. B.; Derksen, L.; Hall, A.; Jochum, M.; Munoz, M. M.; Richter, M.; Vogel, F.; Wittwer, S.; Wüthrich, F.; Gilardi, F.; and Donnay, K. 2021. Empathy-based counterspeech can reduce racist hate speech in a social media field experiment. Proceedings of the National Academy of Sciences, 118(50): e2116310118.
[8]
Jansen, T.; Tong, Y.; Zevallos, V.; and Suarez, P. O. 2022. Perplexed by Quality: A Perplexity-based Method for Adult and Harmful Content Detection in Multilingual Heterogeneous Web Data. arXiv:2212.10440.
[9]
Lin, C.-Y.; and Hovy, E. 2003. Automatic Evaluation of Summaries Using N-gram Co-occurrence Statistics. In Proceedings of the 2003 Human Language Technology Conference of the North American Chapter of the Association for Computational Linguistics, 150-157.
[10]
Mandla, T.; Modha, S.; Shahi, G. K.; Jaiswal, A. K.; Nandini, D.; Patel, D.; Majumder, P.; and Schafer, J. 2021. Overview of the HASOC track at FIRE 2020: Hate Speech and Offensive Content Identification in Indo-European Languages. arXiv:2108.05927.
[11]
Mansourifar, H.; Alsagheer, D.; Shi, W.; Ni, L.; and Huang, Y. 2021. Statistical Analysis of Perspective Scores on Hate Speech Detection. arXiv:2107.02024.
[12]
Mathew, B.; Saha, P.; Tharad, H.; Rajgaria, S.; Singhania, P.; Maity, S. K.; Goyal, P.; and Mukherje, A. 2019. Thou shalt not hate: Countering Online Hate Speech. arXiv:1808.04409.
[13]
McHugh, M. L. 2012. Interrater reliability: the kappa statistic.
[14]
NLLB-Team; Costa-jussà, M. R.; Cross, J.; Çelebi, O.; El-bayad, M.; Heafield, K.; Heffernan, K.; Kalbassi, E.; Lam, J.; Licht, D.; Maillard, J.; Sun, A.; Wang, S.; Wenzek, G.; Youngblood, A.; Akula, B.; Barrault, L.; Gonzalez, G. M.; Hansanti, P.; Hoffman, J.; Jarrett, S.; Sadagopan, K. R.; Rowe, D.; Spruit, S.; Tran, C.; Andrews, P.; Ayan, N. F.; Bhosale, S.; Edunov, S.; Fan, A.; Gao, C.; Goswami, V.; Guzmán, F.; Koehn, P.; Mourachko, A.; Ropers, C.; Saleem, S.; Schwenk, H.; and Wang, J. 2022. No Language Left Behind: Scaling Human-Centered Machine Translation. arXiv:2207.04672.
[15]
Online. 2017. Law Commission of India, Report on Hate Speech, Report no.267. [Online].
[16]
Papineni, K.; Roukos, S.; Ward, T.; and Zhu, W.-J. 2002. BLEU: A Method for Automatic Evaluation of Machine Translation. In Proceedings of the 40th Annual Meeting on Association for Computational Linguistics, ACL '02, 311-318. USA: Association for Computational Linguistics.
[17]
Schieb, C.; and Preuss, M. 2016. Governing hate speech by means of counterspeech on Facebook. In 66th ica annual conference, at fukuoka, japan, 1-23.
[18]
Shliazhko, O.; Fenogenova, A.; Tikhonova, M.; Mikhailov, V.; Kozlova, A.; and Shavrina, T. 2022. mGPT: Few-Shot Learners Go Multilingual. arXiv:2204.07580.
[19]
Silverman, T.; Stewart, C. J.; Birdwell, J.; and Amanullah, Z. 2016. The impact of counter-narratives. Institute for Strategic Dialogue, London. https://www.strategicdia-logue.org/wp-content/uploads/2016/08/Impact-of-Counter-Narratives-ONLINE.pdf-73.
[20]
Stroud, S. R.; and Cox, W. 2018. The varieties of feminist counterspeech in the misogynistic online world. In Mediating Misogyny, 293-310. Springer.
[21]
Tekiroğlu, S. S.; Chung, Y.-L.; and Guerini, M. 2020. Generating Counter Narratives against Online Hate Speech: Data and Strategies. In Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, 1177-1190. Online: Association for Computational Linguistics.
[22]
Wolf, T.; Debut, L.; Sanh, V.; Chaumond, J.; Delangue, C.; Moi, A.; Cistac, P.; Rault, T.; Louf, R.; Funtowicz, M.; Davison, J.; Shleifer, S.; von Platen, P.; Ma, C.; Jernite, Y.; Plu, J.; Xu, C.; Scao, T. L.; Gugger, S.; Drame, M.; Lhoest, Q.; and Rush, A. M. 2020. HuggingFace's Transformers: State-of-the-art Natural Language Processing. arXiv:1910.03771.
[23]
Yadav, A. 2018. Counterspeech: An Alternative Policy to Combat Hate Speech in India. Indian Journal of Law and Human Behaviour, 4(2): 169-78.
[24]
Zhang, T.; Kishore, V.; Wu, F.; Weinberger, K. Q.; and Artzi, Y. 2020. BERTScore: Evaluating Text Generation with BERT. arXiv:1904.09675.
[25]
Zhu, Y.; Lu, S.; Zheng, L.; Guo, J.; Zhang, W.; Wang, J.; and Yu, Y. 2018. Texygen: A Benchmarking Platform for Text Generation Models. In The 41st International ACM SIGIR Conference on Research & Development in Information Retrieval, SIGIR '18,1097-1100. New York, NY, USA: Association for Computing Machinery. ISBN 9781450356572.

Recommendations

Comments

Information & Contributors

Information

Published In

cover image Guide Proceedings
AAAI'24/IAAI'24/EAAI'24: Proceedings of the Thirty-Eighth AAAI Conference on Artificial Intelligence and Thirty-Sixth Conference on Innovative Applications of Artificial Intelligence and Fourteenth Symposium on Educational Advances in Artificial Intelligence
February 2024
23861 pages
ISBN:978-1-57735-887-9

Sponsors

  • Association for the Advancement of Artificial Intelligence

Publisher

AAAI Press

Publication History

Published: 20 February 2024

Qualifiers

  • Research-article
  • Research
  • Refereed limited

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • 0
    Total Citations
  • 0
    Total Downloads
  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 31 Jan 2025

Other Metrics

Citations

View Options

View options

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media