Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
article

LTL on finite and process traces: complexity results and a practical reasoner

Published: 01 September 2018 Publication History

Abstract

Linear temporal logic (LTL) is a modal logic where formulas are built over temporal operators relating events happening in different time instants. According to the standard semantics, LTL formulas are interpreted on traces spanning over an infinite timeline. However, applications related to the specification and verification of business processes have recently pointed out the need for defining and reasoning about a variant of LTL, which we name LTLp, whose semantics is defined over process traces, that is, over finite traces such that, at each time instant, precisely one propositional variable (standing for the execution of some given activity) evaluates true.
The paper investigates the theoretical underpinnings of LTLp and of a related logic formalism, named LTLf, which had already attracted attention in the literature and where formulas have the same syntax as in LTLp and are evaluated over finite traces, but without any constraint on the number of variables simultaneously evaluating true. The two formalisms are comparatively analyzed, by pointing out similarities and differences. In addition, a thorough complexity analysis has been conducted for reasoning problems about LTLp and LTLf, by considering arbitrary formulas as well as classes of formulas defined in terms of restrictions on the temporal operators that are allowed. Finally, based on the theoretical findings of the paper, a practical reasoner specifically tailored for LTLp and LTLf has been developed by leveraging state-of-the-art SAT solvers. The behavior of the reasoner has been experimentally compared with other systems available in the literature.

References

[1]
Alur, R., & Henzinger, T. A. (1990). Real-time Logics: Complexity and Expressiveness. In Proc. of LISCS, pp. 390-401.
[2]
Artale, A., Kontchakov, R., Ryzhikov, V., & Zakharyaschev, M. (2013). The Complexity of Clausal Fragments of LTL. In Proc. of LPAR, pp. 35-52.
[3]
Audemard, G., & Simon, L. (2009). Predicting Learnt Clauses Quality in Modern SAT Solvers. In Proc. of IJCAI, pp. 399-404.
[4]
Bacchus, F., & Kabanza, F. (1998). Planning for Temporally Extended Goals. Annals of Mathematics and Artificial Intelligence, 22(1-2), 5-27.
[5]
Bacchus, F., & Kabanza, F. (2000). Using temporal logics to express search control knowledge for planning. Artificial Intelligence, 116(1-2), 123-191.
[6]
Baier, J. A., & McIlraith, S. A. (2006). Planning with First-Order Temporally Extended Goals using Heuristic Search. In Proc. of AAAI, pp. 788-795.
[7]
Bauland, M., Hemaspaandra, E., Schnoor, H., & Schnoor, I. (2006). Generalized Modal Satisfiability. In Proc. of STACS, pp. 500-511.
[8]
Bauland, M., Schneider, T., Schnoor, H., Schnoor, I., & Vollmer, H. (2009). The Complexity of Generalized Satisfiability for Linear Temporal Logic. Logical Methods in Computer Science, 5(1), 1.
[9]
Bienvenu, M., Fritz, C., & McIlraith, S. A. (2006). Planning with Qualitative Temporal Preferences. In Proc. of KR, pp. 134-144.
[10]
Bienvenu, M., Fritz, C., & McIlraith, S. A. (2011). Specifying and computing preferred plans. Artificial Intelligence, 175(7-8), 1308-1345.
[11]
Biere, A., Heljanko, K., Junttila, T., Latvala, T., & Schuppan, V. (2006). Linear Encodings of Bounded LTL Model Checking. Logical Methods in Computer Science, 2(5), 1-64.
[12]
Bobadilla, L., Sanchez, O., Czarnowski, J., Gossman, K., & LaValle, S. (2011). Controlling Wild Bodies Using Linear Temporal Logic. In Proc. of RSS, pp. 17-24.
[13]
Bylander, T. (1994). The Computational Complexity of Propositional STRIPS Planning. Artificial Intelligence, 69(1-2), 165-204.
[14]
Calvanese, D., De Giacomo, G., & Vardi, M. Y. (2002). Reasoning about Actions and Planning in LTL Action Theories. In Proc. of KR, pp. 593-602.
[15]
Chen, C.-C., & Lin, I.-P. (1993). The Computational Complexity of Satisfiability of Temporal Horn Formulas in Propositional Linear-Time Temporal Logic. Information Processing Letters, 45(3), 131-136.
[16]
Cimatti, A., Clarke, E., Giunchiglia, E., Giunchiglia, F., Pistore, M., Roveri, M., Sebastiani, R., & Tacchella, A. (2002). Nusmv 2: An opensource tool for symbolic model checking. In Proc. of CAV, pp. 359-364. Springer.
[17]
Clarke, E. M., & Schlingloff, B.-H. (2001). Model Ckecking. In Robinson, A., & Voronkov, A. (Eds.), Handbook of Automated Reasoning, Vol. 2, chap. 24, pp. 1635-1790. Elsevier Science.
[18]
De Giacomo, G., De Masellis, R., Grasso, M., Maggi, F. M., & Montali, M. (2014a). Monitoring Business Metaconstraints Based on LTL and LDL for Finite Traces. In Proc. of BPM, pp. 1-14.
[19]
De Giacomo, G., De Masellis, R., & Montali, M. (2014b). Reasoning on LTL on Finite Traces: Insensitivity to Infiniteness. In Proc. of AAAI, pp. 1027-1033.
[20]
De Giacomo, G., & Vardi, M. Y. (1999). Automata-Theoretic Approach to Planning for Temporally Extended Goals. In Proc. of ECP, pp. 226-238.
[21]
De Giacomo, G., & Vardi, M. Y. (2013). Linear Temporal Logic and Linear Dynamic Logic on Finite Traces. In Proc. of IJCAI, pp. 854-860.
[22]
De Wulf, M., Doyen, L., Maquet, N., & Raskin, J.-F. (2008). Antichains: Alternative algorithms for LTL satisfiability and model-checking. In Proc. of TACAS, Vol. 8, pp. 63-77. Springer.
[23]
Demri, S., & Schnoebelen, P. (2002). The Complexity of Propositional Linear Temporal Logics in Simple Cases. Information and Computation, 174(1), 84-103.
[24]
Di Ciccio, C., Marrella, A., & Russo, A. (2015). Knowledge-intensive processes: Characteristics, requirements and analysis of contemporary approaches. Journal on Data Semantics, 4(1), 29-57.
[25]
Ding, X., Smith, S., Belta, C., & Rus, D. (2014). Optimal Control of Markov Decision Processes With Linear Temporal Logic Constraints. IEEE Transactions on Automatic Control, 59(5), 1244-1257.
[26]
Dixon, C., Fisher, M., & Konev, B. (2007). Tractable Temporal Reasoning. In Proc. of IJCAI, pp. 318-323.
[27]
Dixon, C., Konev, B., Fisher, M., & Nietiadi, S. (2013). Deductive temporal reasoning with constraints. Journal of Applied Logic, 11(1), 30-51.
[28]
Edelkamp, S. (2006). On the Compilation of Plan Constraints and Preferences. In Proc. of ICAPS, pp. 374-377.
[29]
Fagin, R., Halpern, J. Y., Moses, Y., & Vardi, M. Y. (1995). Reasoning about Knowledge. MIT Press.
[30]
Fionda, V., & Greco, G. (2016). The Complexity of LTL on Finite Traces: Hard and Easy Fragments. In Proc. of AAAI, pp. 971-977.
[31]
Fisher, M. (1991). A Resolution Method for Temporal Logic. In Proc. of IJCAI, pp. 99-104.
[32]
Gabelaia, D., Kontchakov, R., Kurucz, A., Wolter, F., & Zakharyaschev, M. (2005). Combining spatial and temporal logics: Expressiveness vs. complexity. Journal of Artificial Intelligence Research, 23, 167-243.
[33]
Garey, M., & Johnson, D. (1979). Computers and Intractability-A guide to the Theory of NP-Completeness. Freeman.
[34]
Gerevini, A., Haslum, P., Long, D., Saetti, A., & Dimopoulos, Y. (2009). Deterministic planning in the fifth international planning competition: PDDL3 and experimental evaluation of the planners. Artificial Intelligence, 173(5-6), 619-668.
[35]
Greco, G., Guzzo, A., Lupia, F., & Pontieri, L. (2014). Process Discovery under Precedence Constraints. ACM Transactions on Knowledge Discovery from Data, 9(4), 32.
[36]
Halpern, J. Y. (1995). The Effect of Bounding the Number of Primitive Propositions and the Depth of Nesting on the Complexity of Modal Logic. Artificial Intelligence, 75(2), 361-372.
[37]
Hemaspaandra, E. (2001). The complexity of poor man's logic. Journal of Logic and Computation, 11(4), 609-622.
[38]
Hoffmann, J., Weber, I., & Kraft, F. M. (2012). SAP speaks PDDL: Exploiting a software-engineering model for planning in business process management. Journal of Artificial Intelligence Research, 44, 587-632.
[39]
Hustadt, U., & Schmidt, R. A. (2002). Scientific benchmarking with temporal logic decision procedures. In Proc. of KR, Vol. 2, pp. 533-546.
[40]
IEEE Task Force on Process Mining (2011). Process Mining Manifesto. In Proc. of BPM Workshops, Vol. 99, pp. 169-194.
[41]
Karp, R. (1972). Reducibility among Combinatorial Problems. In Miller, R., & Thatcher, J. (Eds.), Complexity of Computer Computations. Plenum Press.
[42]
Kloetzer, M., & Belta, C. (2008). A Fully Automated Framework for Control of Linear Systems from Temporal Logic Specifications. IEEE Transactions on Automatic Control, 53(1), 287-297.
[43]
Kwon, Y., & Agha, G. (2008). LTLC: Linear Temporal Logic for Control. In Proc. of HSCC, Vol. 4981, pp. 316-329.
[44]
Lange, M. (2004). A Lower Complexity Bound for Propositional Dynamic Logic with Intersection. In Proc. of AiML, pp. 133-147.
[45]
Li, J., Zhang, L., Pu, G., Vardi, M. Y., & He, J. (2014a). LTLf satisfiability checking. In Proc. of ECAI, pp. 513-518.
[46]
Li, J., Yao, Y., Pu, G., Zhang, L., & He, J. (2014b). Aalta: an ltl satisfiability checker over infinite/ finite traces. In Proc. of ACM SIGSOFT, pp. 731-734.
[47]
Maggi, F. M., Mooij, A. J., & van der Aalst, W. M. P. (2011). User-guided discovery of declarative process models. In Proc. of CIDM, pp. 192-199.
[48]
Maggi, F. M. (2013). Declarative process mining with the declare component of prom. In Proc. of BPM Demos.
[49]
Maggi, F., Montali, M., Westergaard, M., & van der Aalst, W. (2011a). Monitoring Business Constraints with Linear Temporal Logic: An Approach Based on Colored Automata. In Proc. of BPM, pp. 132-147.
[50]
Maggi, F., Mooij, A., & Aalst, W. (2011b). User-Guided Discovery of Declarative Process Models. In Proc. of CIDM, pp. 192-199.
[51]
Maggi, F., Westergaard, M., Montali, M., & van der Aalst, W. (2011c). Runtime Verification of LTL-Based Declarative Process Models. In Proc. of RV, pp. 131-146.
[52]
Markey, N. (2004). Past is for free: on the complexity of verifying linear temporal properties with past. Acta Informatica, 40(6-7), 431-458.
[53]
Ono, H., & Nakamura, A. (1980). On the size of refutation Kripke models for some linear modal and tense logics. Studia Logica, 39(4), 325-333.
[54]
Patrizi, F., Lipovetzky, N., De Giacomo, G., & Geffner, H. (2011). Computing Infinite Plans for LTL Goals Using a Classical Planner. In Proc. of IJCAI, pp. 2003-2008.
[55]
Pesic, M., Bosnacki, D., & van der Aalst, W. (2010). Enacting Declarative Languages Using LTL: Avoiding Errors and Improving Performance. In Proc. of SPIN, pp. 146-161.
[56]
Pesic, M., Schonenberg, H., & van der Aalst, W. (2007). DECLARE: Full Support for Loosely-Structured Processes. In Proc. of EDOC, pp. 287-298.
[57]
Pesic, M., & van der Aalst, W. (2006a). DecSerFlow: Towards a Truly Declarative Service Flow Language. In The Role of Business Processes in Service Oriented Architectures, No. 6291 in Dagstuhl Seminar Proceedings.
[58]
Pesic, M., & van der Aalst, W. M. P. (2006b). A Declarative Approach for Flexible Business Processes Management. In Proc. of BPM, pp. 169-180.
[59]
Pnueli, A. (1977). The Temporal Logic of Programs. In Proc. of FOCS, pp. 46-57.
[60]
Pnueli, A. (1981). The Temporal Semantics of Concurrent Programs. Theoretical Computer Science, 13, 45-60.
[61]
Post, E. L. (1941). On The Two-Valued Iterative Systems of Mathematical Logic. Princeton University Press.
[62]
Rovani, M., Maggi, F. M., de Leoni, M., & van der Aalst, W. M. (2015). Declarative process mining in healthcare. Expert Systems with Applications, 42(23), 9236-9251.
[63]
Rozier, K. Y. (2011). Linear temporal logic symbolic model checking. Computer Science Review, 5(2), 163-203.
[64]
Rozier, K. Y., & Vardi, M. Y. (2007). LTL satisfiability checking. In Proc. of Spin, Vol. 4595, pp. 149-167. Springer.
[65]
Rozier, K. Y., & Vardi, M. Y. (2010). LTL satisfiability checking. International Journal on Software Tools for Technology Transfer (STTT), 12(2), 123-137.
[66]
Rozier, K. Y., & Vardi, M. Y. (2011). A multi-encoding approach for LTL symbolic satisfiability checking. In Proc. of FM, pp. 417-431. Springer.
[67]
Schobbens, P.-Y., & Raskin, J.-F. (1999). The Logic of Initially and Next, Complete Axiomatisation and Complexity Issues. Information Processing Letters, 69(5), 221-225.
[68]
Schuppan, V., & Darmawan, L. (2011). Evaluating LTL Satisfiability Solvers. In Proc. of ATVA, Vol. 6996, pp. 397-413. Springer.
[69]
Sistla, A. P., & Clarke, E. M. (1985). The Complexity of Propositional Linear Temporal Logics. Journal of the ACM, 32(3), 733-749.
[70]
Sohrabi, S., Baier, J. A., & McIlraith, S. A. (2011). Preferred Explanations: Theory and Generation via Planning. In Proc. of AAAI, pp. 261-267.
[71]
van derAalst, W., Pesic, M., & Schonenberg, H. (2009). Declarative Workflows: Balancing Between Flexibility and Support. Computer Science-Research and Development, 23(2), 99-113.
[72]
van Dongen, B., de Medeiros, A., Verbeek, H., Weijters, A., & van der Aalst, W. (2005). The ProM Framework: A New Era in Process Mining Tool Support. In Ciardo, G., & Darondeau, P. (Eds.), Applications and Theory of Petri Nets 2005, Vol. 3536, pp. 1105-1116. Springer Berlin / Heidelberg.

Cited By

View all
  • (2024)Foundations of reactive synthesis for declarative process specificationsProceedings of the Thirty-Eighth AAAI Conference on Artificial Intelligence and Thirty-Sixth Conference on Innovative Applications of Artificial Intelligence and Fourteenth Symposium on Educational Advances in Artificial Intelligence10.1609/aaai.v38i16.29690(17416-17425)Online publication date: 20-Feb-2024
  • (2024)First-Order Temporal Logic on Finite Traces: Semantic Properties, Decidable Fragments, and ApplicationsACM Transactions on Computational Logic10.1145/365116125:2(1-43)Online publication date: 16-Apr-2024
  • (2024)Learning to Check LTL Satisfiability and to Generate Traces via Differentiable Trace CheckingProceedings of the 33rd ACM SIGSOFT International Symposium on Software Testing and Analysis10.1145/3650212.3680337(996-1008)Online publication date: 11-Sep-2024
  • Show More Cited By

Recommendations

Comments

Information & Contributors

Information

Published In

cover image Journal of Artificial Intelligence Research
Journal of Artificial Intelligence Research  Volume 63, Issue 1
September 2018
1012 pages

Publisher

AI Access Foundation

El Segundo, CA, United States

Publication History

Published: 01 September 2018
Published in JAIR Volume 63, Issue 1

Qualifiers

  • Article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 12 Feb 2025

Other Metrics

Citations

Cited By

View all
  • (2024)Foundations of reactive synthesis for declarative process specificationsProceedings of the Thirty-Eighth AAAI Conference on Artificial Intelligence and Thirty-Sixth Conference on Innovative Applications of Artificial Intelligence and Fourteenth Symposium on Educational Advances in Artificial Intelligence10.1609/aaai.v38i16.29690(17416-17425)Online publication date: 20-Feb-2024
  • (2024)First-Order Temporal Logic on Finite Traces: Semantic Properties, Decidable Fragments, and ApplicationsACM Transactions on Computational Logic10.1145/365116125:2(1-43)Online publication date: 16-Apr-2024
  • (2024)Learning to Check LTL Satisfiability and to Generate Traces via Differentiable Trace CheckingProceedings of the 33rd ACM SIGSOFT International Symposium on Software Testing and Analysis10.1145/3650212.3680337(996-1008)Online publication date: 11-Sep-2024
  • (2024)SAT Meets Tableaux for Linear Temporal Logic SatisfiabilityJournal of Automated Reasoning10.1007/s10817-023-09691-168:2Online publication date: 15-Mar-2024
  • (2024)An ILASP-Based Approach to Repair Petri NetsLogic Programming and Nonmonotonic Reasoning10.1007/978-3-031-74209-5_7(85-97)Online publication date: 11-Oct-2024
  • (2024)LTLf2ASP: LTLf Bounded Satisfiability in ASPLogic Programming and Nonmonotonic Reasoning10.1007/978-3-031-74209-5_28(373-386)Online publication date: 11-Oct-2024
  • (2024)Conformance Checking of Fuzzy Logs Against Declarative Temporal SpecificationsBusiness Process Management10.1007/978-3-031-70396-6_3(39-56)Online publication date: 1-Sep-2024
  • (2024)A Direct ASP Encoding for DeclarePractical Aspects of Declarative Languages10.1007/978-3-031-52038-9_8(116-133)Online publication date: 15-Jan-2024
  • (2023)Complexity of safety and cosafety fragments of linear temporal logicProceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence and Thirty-Fifth Conference on Innovative Applications of Artificial Intelligence and Thirteenth Symposium on Educational Advances in Artificial Intelligence10.1609/aaai.v37i5.25768(6236-6244)Online publication date: 7-Feb-2023
  • (2023)Towards ILP-Based Passive LearningInductive Logic Programming10.1007/978-3-031-49299-0_3(30-45)Online publication date: 13-Nov-2023
  • Show More Cited By

View Options

View options

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media