Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.2312/cgvc.20171279guideproceedingsArticle/Chapter ViewAbstractPublication PagesConference Proceedingsacm-pubtype
research-article

gVirtualXRay: virtual x-ray imaging library on GPU

Published: 14 September 2017 Publication History

Abstract

We present an Open-source library called gVirtualXRay to simulate realistic X-ray images in realtime. It implements the attenuation law (also called Beer-Lambert) on GPU. It takes into account the polychromatism of the beam spectra as well as the finite size of X-ray tubes. The library is written in C++ using modern OpenGL. It is fully portable and works on most common desktop/laptop computers. It has been tested on MS Windows, Linux, and Mac OS X. It supports a wide range of windowing solutions, such as FLTK, GLUT, GLFW3, Qt4, and Qt5. The library also offers realistic visual rendering of anatomical structures, including bones, liver, diaphragm and lungs. The accuracy of the X-ray images produced by gVirtualXRay's implementation has been validated using Geant4, a well established state-of-the-art Monte Carlo simulation toolkit developed by CERN. gVirtualXRay can be used in a wide range of applications where fast and accurate X-ray simulations from polygon meshes are needed, e.g. medical simulators for training purposes, simulation of tomography data acquisition with patient motion to include artefacts in reconstructed CT images, and deformable registration. Our application example package includes real-time respiration and X-ray simulation, CT acquisition and reconstruction, and iso-surfacing of implicit functions using Marching Cubes.

References

[1]
{A*03} Agostinelli S., et al.: Geant4-a simulation toolkit. Nucl lustrum Methods Phys Res A 506, 3 (2003), 250 -- 303. 1, 3
[2]
{AHLG*13} Ali-Hamadi D., Liu T., Gilles B., Kavan L., Faure F., Palombi O., Cani M.-P.: Anatomy transfer. ACM Trans. Graph. 32, 6 (Nov. 2013), 188:1--188:8. 63.2508415. 5
[3]
{B*04} Bielajew A., et al.: History, overview and recent improvements of EGS4. Tech. rep., Stanford Linear Accelerator Center (SLAC), 2004. 1
[4]
{B*12} Bert J., et al.: Hybrid GATE: A GPU/CPU implementation for imaging and therapy applications. In 2012 IEEE Nuclear Science Symposium and Medical Imaging Conference Record (NSS/MIC) (oct 2012), pp. 2247--2250. 1
[5]
{BC74} Bouchet A., Cuilleret J.: Anatomie topographique, descriptive et fonctionnelle: le thorax - première et deuxième partie. Simep Éditions, 1974. ISBN: 2853341763. 6
[6]
{BHS*10} Berger M. J., Hubbell J. H., Seltzer S. M., Chang J., Coursey J. S., Sukumar R., Zucker D. S., Olsen K.: XCOM: Photon Cross Section Database. Tech. Rep. NBSIR 87--3597, National Institute of Standards and Technology, Gaithersburg, MD, 2010. URL: http://physics.nist.gov/xcom. 3
[7]
{Bli82} Blinn J. F.: A generalization of algebraic surface drawing. ACM Trans Graph 1, 3 (July 1982), 235--256. 4
[8]
{BP07} Baran I., Popović J.: Automatic rigging and animation of 3d characters. ACM Trans. Graph. 26, 3 (July 2007). 5
[9]
{BSFVS95} Baró J., Sempau J., Fernández-Varea J. M., Salvat F.: PENELOPE: An algorithm for Monte Carlo simulation of the penetration and energy loss of electrons and positrons in matter. Nucl Instrum Methods Phys Res B 100, 1 (1995), 31--46. 1
[10]
{BTST11} Bharaj G., Thormählen T., Seidel H.-P., Theobalt C.: Automatically rigging multi-component characters. Comp. Graph. Forum (Proc. Eurographics 2012) 30, 2 (2011). 5
[11]
{EMP*02} Ebert D. S., Musgrave F. K., Peachey D., Perlin K., Worley S. (Eds.): Texturing and Modeling, A Procedural Approach, 3<sup>rd</sup> ed. Morgan Kaufmann, 2002, ch. Real-time procedural solid texturing, pp. 6--94. 4
[12]
{FDLB06} Freud N., Duvauchelle P., Létang J. M., Babot D.: Fast and robust ray casting algorithms for virtual x-ray imaging. Nucl Instrum Methods Phys Res B 248, 1 (2006), 175--180. 1
[13]
{Gib97} Gibson S. F. F.: Linked Volumetric Objects for Physics-based Modeling. Tech. Rep. TR97-20, Mitsubishi Electric Research Labs, 1997. 7
[14]
{HDM*17} Han L., Dong H., McClelland J., Han L., Hawkes D., Barratt D.: A hybrid patient-specific biomechanical model based image registration method for the motion estimation of lungs. Med Image Anal 39 (2017), 87--100. 6
[15]
{JZJ14} Jia X., Ziegenhein P., Jiang S. B.: GPU-based high-performance computing for radiation therapy. Phys MedBiol 59, 4 (2014), R151--R182. 1
[16]
{KCŽO07} Kavan L., Collins S., Žára J., O'Sullivan C.: Skinning with dual quaternions. In Proceedings of the 2007 symposium on Interactive 3D graphics and games (2007), ACM, pp. 39--46. 5
[17]
{LC87} Lorensen W. E., Cline H. E.: Marching cubes: A high resolution 3D surface construction algorithm. SIGGRAPH Comput Graph 21, 4 (Aug. 1987), 163--169. 4
[18]
{LL10} Lévy B., Liu Y.: Lp centroidal voronoi tessellation and its applications. ACM Trans Graph 29, 4 (2010), 119:1--119:11. 6
[19]
{Mt05} Meier U., et al.: Real-time deformable models for surgery simulation: a survey. Comput Methods Programs Biomed 77, 3 (2005), 183--197. 7
[20]
{MWF*16} Mastmeyer A., Wilms M., Fortmeier D., Schröder J., Handels H.: Real-time ultrasound simulation for training of US-guided needle insertion in breathing virtual patients. In Medicine Meets Virtual Reality 22: NextMed/MMVR22 (2016), vol. 220 of Stud Health Technol Inform, IOS Press, pp. 219--226. 6
[21]
{Ope15} OpenMP Architecture Review Board: OpenMP application programming interface version 4.5, Nov. 2015. URL: http://www.openmp.org/wp-content/uploads/openmp-4.5.pdf. 4
[22]
{RLA16} Rodriguez A., Leon A., Arroyo G.: Parallel deformation of heterogeneous chainmail models: Application to interactive deformation of large medical volumes. Comput Biol Med 79 (2016), 222--232. 7
[23]
{SBLD15} Serrurier A., Bönsch A., Lau R., Deserno T. M.: Mri visualisation by digitally reconstructed radiographs. In SPIE Medical Imaging (2015), International Society for optics and Photonics, pp. 94180I--94180I. 5
[24]
{SBS00} Schneider W., Bortfeld T., Schlegel W.: Correlation between CT numbers and tissue parameters needed for Monte Carlo simulations of clinical dose distributions. Phys Med Biol 45, 2 (Feb. 2000), 459--78. 3
[25]
{SHD15} Serrurier A., Herrler A., Deserno T.: Towards realistic patient-specific human models for virtual reality regional anaesthesia simulation. In Proceedings of 34th ESRA Congress (2015), pp. 02--05. 5
[26]
{SSK*13} Shotton J., Sharp T., Kipman A., Fitzgibbon A., Finocchio M., Blake A., Cook M., Moore R.: Real-time human pose recognition in parts from single depth images. Communications of the ACM 56, 1 (2013), 116--124. 5
[27]
{V*09} Villard P., et al.: Simulation of percutaneous transhepatic cholangiography training simulator with real-time breathing motion. Int J Comput Assist Radiol Surg 4, 9 (Nov. 2009), 571--578. 2, 7
[28]
{VGF*09} Vidal F. P., Garnier M., Freud N., Létang J. M., John N. W.: Simulation of X-ray attenuation on the GPU. In Theory and Practice of Computer Graphics (TCPG'09) (June 2009), Eurographics, pp. 25--32. 2, 3
[29]
{VV15} Vidal F. P., Villard P.-F.: Simulated motion artefact in computed tomography. In Eurographics Workshop on Visual Computing for Biology and Medicine (2015), Bühler K., Linsen L., John N. W., (Eds.), The Eurographics Association, pp. 213--214. 7
[30]
{VV16} Vidal F. P., Villard P.-F.: Development and validation of real-time simulation of X-ray imaging with respiratory motion. Comput Med Imaging Graph 49 (Apr. 2016), 1--15. 1, 2, 3, 7
[31]
{VVL12} Vidal F. P., Villard P.-F., Lutton E.: Tuning of patient specific deformable models using an adaptive evolutionary optimization strategy. IEEE Transactions on Biomedical Engineering 59, 10 (oct. 2012), 2942 -- 2949. 7
[32]
{WLGT01} Wilson T. A., Legrand A., Gevenois P., Troyer A.: Respiratory effects of the external and internal intercostal muscles in humans. J Physiol 530, 2 (2001), 319--330. 6
[33]
{ZCCD04} Zordan V. B., Celly B., Chiu B., DiLorenzo P. C.: Breathe easy: Model and control of simulated respiration for animation. In ACM SIGGRAPH/Eurographics symposium on Computer animation (July 2004), pp. 29--37. 6
[34]
{Zyg} Zygote Media Group: ZygoteBODY. URL: https://www.zygotebody.com/. 5

Recommendations

Comments

Information & Contributors

Information

Published In

cover image Guide Proceedings
CGVC '17: Proceedings of the Conference on Computer Graphics & Visual Computing
September 2017
103 pages

Publisher

Eurographics Association

Goslar, Germany

Publication History

Published: 14 September 2017

Qualifiers

  • Research-article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • 0
    Total Citations
  • 0
    Total Downloads
  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 06 Oct 2024

Other Metrics

Citations

View Options

View options

Get Access

Login options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media