Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.24963/ijcai.2023/442guideproceedingsArticle/Chapter ViewAbstractPublication PagesConference Proceedingsacm-pubtype
research-article

Learning survival distribution with implicit survival function

Published: 19 August 2023 Publication History
  • Get Citation Alerts
  • Abstract

    Survival analysis aims at modeling the relationship between covariates and event occurrence with some untracked (censored) samples. In implementation, existing methods model the survival distribution with strong assumptions or in a discrete time space for likelihood estimation with censorship, which leads to weak generalization. In this paper, we propose Implicit Survival Function (ISF) based on Implicit Neural Representation for survival distribution estimation without strong assumptions, and employ numerical integration to approximate the cumulative distribution function for prediction and optimization. Experimental results show that ISF outperforms the state-of-the-art methods in three public datasets and has robustness to the hyperparameter controlling estimation precision.

    References

    [1]
    Laura Antolini, Patrizia Boracchi, and Elia Biganzoli. A time-dependent discrimination index for survival data. Stats in Medicine, 24(24):3927-3944, 2005.
    [2]
    Yinbo Chen, Sifei Liu, and Xiaolong Wang. Learning continuous image representation with local implicit image function. 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pages 8624-8634, 2020.
    [3]
    Pierre Courtiol, Charles Maussion, Matahi Moarii, Elodie Pronier, Samuel Pilcer, Meriem Sefta, Pierre Manceron, Sylvain Toldo, Mikhail Zaslavskiy, Nolwenn Le Stang, Nicolas Girard, Olivier Elemento, Andrew G. Nicholson, Jean-Yves Blay, Françoise Galateau-Sallé, Gilles Wainrib, and Thomas Clozel. Deep learning-based classification of mesothelioma improves prediction of patient outcome. Nature Medicine, 25(10):1519-1525, Oct 2019.
    [4]
    David R. Cox. Regression Models and Life-Tables, pages 527-541. Springer New York, New York, NY, 1992.
    [5]
    C. Curtis, Sohrab P. Shah, S. Chin, G. Turashvili, O. Rueda, M. Dunning, D. Speed, A. Lynch, Shamith A. Samarajiwa, Yinyin Yuan, S. Gräf, G. Ha, Gholamreza Haffari, A. Bashashati, R. Russell, S. McKinney, A. Langerod, A. Green, E. Provenzano, G. Wishart, S. Pinder, P. Watson, F. Markowetz, L. Murphy, I. Ellis, A. Purushotham, A. Borresen-Dale, J. Brenton, S. Tavaré, C. Caldas, and S. Aparicio. The genomic and transcriptomic architecture of 2,000 breast tumours reveals novel subgroups. Nature, 486:346 - 352, 2012.
    [6]
    Kjell A. Doksum and Arnljot Hóyland. Models for variable-stress accelerated life testing experiments based on wiener processes and the inverse gaussian distribution. Technometrics, 34(1):74-82, 1992.
    [7]
    Jr Harrell, Frank E., Robert M. Califf, David B. Pryor, Kerry L. Lee, and Robert A. Rosati. Evaluating the Yield of Medical Tests. JAMA, 247(18):2543- 2546, 1982.
    [8]
    Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural Comput., 9(8):1735-1780, 1997.
    [9]
    Hemant Ishwaran, Udaya B. Kogalur, Eugene H. Blackstone, and Michael S. Lauer. Random survival forests. The Annals of Applied Statistics, 2(3):841- 860, 2008.
    [10]
    How Jing and Alexander J. Smola. Neural survival recommender. In Proceedings of the Tenth ACM International Conference on Web Search and Data Mining, WSDM '17, page 515-524, New York, NY, USA, 2017. Association for Computing Machinery.
    [11]
    Jared L. Katzman, Uri Shaham, Alexander Cloninger, Jonathan Bates, Tingting Jiang, and Yuval Kluger. Deepsurv: personalized treatment recommender system using a cox proportional hazards deep neural network. BMC Medical Research Methodology, 18(1):24, Feb 2018.
    [12]
    William A. Knaus, Frank Harrell, Joanne Lynn, Lee M. Goldman, Russell S. Phillips, Alfred F. Connors, Neal V. Dawson, William J. Fulkerson, Robert Califf, Norman A. Desbiens, Peter M. Layde, RobertK. Oye, Paul E. Bellamy, Rosemarie B. Hakim, and Douglas P. Wagner. The support prognostic model: Objective estimates of survival for seriously ill hospitalized adults. Annals of Internal Medicine, 122:191-203, 1995.
    [13]
    Elisa T. Lee and John Wenyu Wang. Statistical Methods for Survival Data Analysis, volume 476. Wiley Publishing, 2003.
    [14]
    Changhee Lee, William R. Zame, Jinsung Yoon, and Mihaela van der Schaar. Deephit: A deep learning approach to survival analysis with competing risks. AAAI, pages 2314-2321, 2018.
    [15]
    Yan Li, Jie Wang, Jieping Ye, and Chandan K. Reddy. A multi-task learning formulation for survival analysis. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD '16, page 1715-1724, New York, NY, USA, 2016. Association for Computing Machinery.
    [16]
    Hongming Li, Pamela Boimel, James Janopaul-Naylor, Haoyu Zhong, Ying Xiao, Edgar Ben-Josef, and Yong Fan. Deep convolutional neural networks for imaging data based survival analysis of rectal cancer. IEEE International Symposium on Biomedical Imaging, pages 846-849, 2019.
    [17]
    Ira M. Longini, W. Scott Clark, Robert H. Byers, John W. Ward, William W. Darrow, George F. Lemp, and HerbertW. Hethcote. Statistical analysis of the stages of hiv infection using a markov model. Statistics in Medicine, 8(7):831-843, 1989.
    [18]
    Ben Mildenhall, Pratul P. Srinivasan, Matthew Tancik, Jonathan T. Barron, Ravi Ramamoorthi, and Ren Ng. Nerf: Representing scenes as neural radiance fields for view synthesis. In European Conference on Computer Vision, 2020.
    [19]
    Chirag Nagpal, Xinyu Li, and Artur Dubrawski. Deep survival machines: Fully parametric survival regression and representation learning for censored data with competing risks. IEEE Journal of Biomedical and Health Informatics, 25(8):3163-3175, 2021.
    [20]
    Rajesh Ranganath, Adler Perotte, Noémie Elhadad, and David Blei. Deep survival analysis. Machine Learning for Healthcare Conference, 56:101- 114, 2016.
    [21]
    Kan Ren, Jiarui Qin, Lei Zheng, Zhengyu Yang, Weinan Zhang, Lin Qiu, and Yong Yu. Deep recurrent survival analysis. AAAI, 33(1):4798-4805, 2019.
    [22]
    Matthew Tancik, Pratul P. Srinivasan, Ben Mildenhall, Sara Fridovich-Keil, Nithin Raghavan, Utkarsh Singhal, Ravi Ramamoorthi, Jonathan T. Barron, and Ren Ng. Fourier features let networks learn high frequency functions in low dimensional domains. In Proceedings of the 34th International Conference on Neural Information Processing Systems, NIPS'20, Red Hook, NY, USA, 2020. Curran Associates Inc.
    [23]
    Robert Tibshirani. The lasso method for variable selection in the cox model. Statistics in Medicine, 16(4):385-395, 1997.
    [24]
    Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Proceedings of the 31st International Conference on Neural Information Processing Systems, NIPS'17, pages 6000-6010, Red Hook, NY, USA, 2017. Curran Associates Inc.
    [25]
    Shekoufeh Gorgi Zadeh and Matthias Schmid. Bias in cross-entropy-based training of deep survival networks. IEEE Transactions on Pattern Analysis and Machine Intelligence, 43(9):3126-3137, 2021.
    [26]
    Amin Zadeh Shirazi, Eric Fornaciari, Narjes Sadat Bagherian, Lisa M. Ebert, Barbara Koszyca, and Guillermo A. Gomez. Deepsurvnet: deep survival convolutional network for brain cancer survival rate classification based on histopathological images. Medical & Biological Engineering & Computing, 58(5):1031-1045, May 2020.
    [27]
    Xinliang Zhu, Jiawen Yao, and Junzhou Huang. Deep convolutional neural network for survival analysis with pathological images. IEEE International Conference on Bioinformatics and Biomedicine, pages 544-547, 2016.

    Index Terms

    1. Learning survival distribution with implicit survival function
        Index terms have been assigned to the content through auto-classification.

        Recommendations

        Comments

        Information & Contributors

        Information

        Published In

        cover image Guide Proceedings
        IJCAI '23: Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence
        August 2023
        7242 pages
        ISBN:978-1-956792-03-4

        Sponsors

        • International Joint Conferences on Artifical Intelligence (IJCAI)

        Publisher

        Unknown publishers

        Publication History

        Published: 19 August 2023

        Qualifiers

        • Research-article
        • Research
        • Refereed limited

        Contributors

        Other Metrics

        Bibliometrics & Citations

        Bibliometrics

        Article Metrics

        • 0
          Total Citations
        • 0
          Total Downloads
        • Downloads (Last 12 months)0
        • Downloads (Last 6 weeks)0
        Reflects downloads up to 10 Aug 2024

        Other Metrics

        Citations

        View Options

        View options

        Media

        Figures

        Other

        Tables

        Share

        Share

        Share this Publication link

        Share on social media