Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
research-article

Entity alignment with fusing relation representation

Published: 01 January 2024 Publication History

Abstract

Entity alignment is the task of identifying entities from different knowledge graphs (KGs) that point to the same item and is important for KG fusion. In the real world, due to the heterogeneity between different KGs, equivalent entities often have different relations around them, so it is difficult for Graph Convolutional Network (GCN) to accurately learn the relation information in the KGs. Moreover, to solve the problem regarding inadequate utilisation of relation information in entity alignment, a novel GCN-based model, joint Unsupervised Relation Alignment for Entity Alignment (URAEA), is proposed. The model first employs a novel method for calculating relation embeddings by using entity embeddings, then constructs unsupervised seed relation alignments through these relation embeddings, and finally performs entity alignment together with relation alignment. In addition, the seed entity alignments are expanded based on the generated seed relation alignments. Experiments conducted on three real-world datasets show that this approach outperforms state-of-the-art methods.

References

[1]
K.D. Bollacker, C. Evans, P.K. Paritosh, T. Sturge and J. Taylor, Freebase: A collaboratively created graph database for structuring human knowledge, in: Proceedings of the ACM SIGMOD International Conference on Management of Data, SIGMOD 2008, Vancouver, BC, Canada, June 10–12, 2008, J.T. Wang, ed., ACM, 2008, pp. 1247–1250.
[2]
A. Bordes, N. Usunier, A. García-Durán, J. Weston and O. Yakhnenko, Translating embeddings for modeling multi-relational data, in: Advances in Neural Information Processing Systems 26: 27th Annual Conference on Neural Information Processing Systems 2013, Lake Tahoe, Nevada, United States, December 5–8, 2013, C.J.C. Burges, L. Bottou, Z. Ghahramani and K.Q. Weinberger, eds, Proceedings of a Meeting Held, 2013, pp. 2787–2795, https://proceedings.neurips.cc/paper/2013/hash/1cecc7a77928ca8133fa24680a88d2f9-Abstract.html.
[3]
Y. Cao, Z. Liu, C. Li, Z. Liu, J. Li and T. Chua, Multi-channel graph neural network for entity alignment, in: Proceedings of the 57th Conference of the Association for Computational Linguistics, ACL 2019, Florence, Italy, July 28–August 2, 2019, A. Korhonen, D.R. Traum and L. Marquez`, eds, Volume 1: Long Papers, Association for Computational Linguistics, 2019, pp. 1452–1461.
[4]
M. Chen, Y. Tian, M. Yang and C. Zaniolo, Multilingual knowledge graph embeddings for cross-lingual knowledge alignment, in: Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence, IJCAI 2017, Melbourne, Australia, August 19–25, 2017, C. Sierra, ed., ijcai.org, 2017, pp. 1511–1517.
[5]
R. Dang, C. Liu, M. Liu and Q. Chen, Channel attention and multi-scale graph neural networks for skeleton-based action recognition, AI Communications (2022), 1–19.
[6]
L. Du, A. Kumar, M. Johnson and M. Ciaramita, Using entity information from a knowledge base to improve relation extraction, in: Proceedings of the Australasian Language Technology Association Workshop, ALTA 2015, Parramatta, Australia, December 8–9, 2015, B. Hachey and K. Webster, eds, ACL, 2015, pp. 31–38, https://aclanthology.org/U15-1004/.
[7]
D.P. Kingma and J. Ba, Adam: A method for stochastic optimization, in: 3rd International Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, May 7–9, 2015, Y. Bengio and Y. LeCun, eds, Conference Track Proceedings, 2015, http://arxiv.org/abs/1412.6980.
[8]
T.N. Kipf and M. Welling, Semi-supervised classification with graph convolutional networks, in: 5th International Conference on Learning Representations, ICLR 2017, Toulon, France, April 24–26, 2017, Conference Track Proceedings, OpenReview.net, 2017. https://openreview.net/forum?id=SJU4ayYgl.
[9]
B. Kotnis and V. Nastase, Analysis of the impact of negative sampling on link prediction in knowledge graphs, 2017, CoRR, http://arxiv.org/abs/1708.06816.
[10]
J. Lehmann, R. Isele, M. Jakob, A. Jentzsch, D. Kontokostas, P.N. Mendes, S. Hellmann, M. Morsey, P. van Kleef, S. Auer and C. Bizer, DBpedia – a large-scale, multilingual knowledge base extracted from Wikipedia, Semantic Web 6(2) (2015), 167–195.
[11]
Y. Lin, Z. Liu, H. Luan, M. Sun, S. Rao and S. Liu, Modeling relation paths for representation learning of knowledge bases, in: Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing, EMNLP 2015, Lisbon, Portugal, September 17–21, 2015, L. Marquez`, C. Callison-Burch, J. Su, D. Pighin and Y. Marton, eds, The Association for Computational Linguistics, 2015, pp. 705–714.
[12]
J. Liu, Y. Lin, Z. Liu and M. Sun, XQA: A cross-lingual open-domain question answering dataset, in: Proceedings of the 57th Conference of the Association for Computational Linguistics, ACL 2019, Florence, Italy, July 28–August 2, 2019, A. Korhonen, D.R. Traum and L. Marquez`, eds, Volume 1: Long Papers, Association for Computational Linguistics, 2019, pp. 2358–2368.
[13]
H. Nie, X. Han, L. Sun, C.M. Wong, Q. Chen, S. Wu and W. Zhang, Global structure and local semantics-preserved embeddings for entity alignment, in: Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence, IJCAI 2020, C. Bessiere, ed., ijcai.org, 2020, pp. 3658–3664.
[14]
S. Pei, L. Yu, R. Hoehndorf and X. Zhang, Semi-supervised entity alignment via knowledge graph embedding with awareness of degree difference, in: The World Wide Web Conference, WWW 2019, San Francisco, CA, USA, May 13–17, 2019, L. Liu, R.W. White, A. Mantrach, F. Silvestri, J.J. McAuley, R. Baeza-Yates and L. Zia, eds, ACM, 2019, pp. 3130–3136.
[15]
R.K. Srivastava, K. Greff and J. Schmidhuber, Highway networks, 2015, CoRR, http://arxiv.org/abs/1505.00387.
[16]
F.M. Suchanek, G. Kasneci and G. Weikum, YAGO: a large ontology from Wikipedia and WordNet, J. Web Semant. 6(3) (2008), 203–217.
[17]
Z. Sun, W. Hu and C. Li, Cross-lingual entity alignment via joint attribute-preserving embedding, in: The Semantic Web – ISWC 2017 – 16th International Semantic Web Conference, Vienna, Austria, October 21–25, 2017, C. d’Amato, M. Fernandez´, V.A.M. Tamma, F. Lecué´, P. Cudre-Mauroux´, J.F. Sequeda, C. Lange and J. Heflin, eds, Lecture Notes in Computer Science, Vol. 10587, Springer, 2017, pp. 628–644.
[18]
Z. Sun, W. Hu, Q. Zhang and Y. Qu, Bootstrapping entity alignment with knowledge graph embedding, in: Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence, IJCAI 2018, Stockholm, Sweden, July 13–19, 2018, J. Lang, ed., ijcai.org, 2018, pp. 4396–4402.
[19]
Z. Sun, J. Huang, W. Hu, M. Chen, L. Guo and Y. Qu, TransEdge: Translating relation-contextualized embeddings for knowledge graphs, in: The Semantic Web – ISWC 2019 – 18th International Semantic Web Conference, Proceedings, Part I, Auckland, New Zealand, October 26–30, 2019, C. Ghidini, O. Hartig, M. Maleshkova, V. Svatek´, I.F. Cruz, A. Hogan, J. Song, M. Lefrancoiş and F. Gandon, eds, Lecture Notes in Computer Science, Vol. 11778, Springer, 2019, pp. 612–629.
[20]
Z. Sun, C. Wang, W. Hu, M. Chen, J. Dai, W. Zhang and Y. Qu, Knowledge graph alignment network with gated multi-hop neighborhood aggregation, in: The Thirty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2020, the Thirty-Second Innovative Applications of Artificial Intelligence Conference, IAAI 2020, the Tenth AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2020, New York, NY, USA, February 7–12, 2020, 2020, pp. 222–229, https://ojs.aaai.org/index.php/AAAI/article/view/5354.
[21]
P. Velickovic, G. Cucurull, A. Casanova, A. Romero, P. Liò and Y. Bengio, Graph attention networks, in: 6th International Conference on Learning Representations, ICLR 2018, Vancouver, BC, Canada, April 30–May 3, 2018, Conference Track Proceedings, OpenReview.net, 2018, https://openreview.net/forum?id=rJXMpikCZ.
[22]
Z. Wang, Q. Lv, X. Lan and Y. Zhang, Cross-lingual knowledge graph alignment via graph convolutional networks, in: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, Brussels, Belgium, October 31–November 4, 2018, E. Riloff, D. Chiang, J. Hockenmaier and J. Tsujii, eds, Association for Computational Linguistics, 2018, pp. 349–357.
[23]
Y. Wu, X. Liu, Y. Feng, Z. Wang, R. Yan and D. Zhao, Relation-aware entity alignment for heterogeneous knowledge graphs, in: Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence, IJCAI 2019, Macao, China, August 10–16, 2019, S. Kraus, ed., ijcai.org, 2019, pp. 5278–5284.
[24]
Y. Wu, X. Liu, Y. Feng, Z. Wang and D. Zhao, Jointly learning entity and relation representations for entity alignment, in: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing, EMNLP-IJCNLP 2019, Hong Kong, China, November 3–7, 2019, K. Inui, J. Jiang, V. Ng and X. Wan, eds, Association for Computational Linguistics, 2019, pp. 240–249.
[25]
Y. Wu, X. Liu, Y. Feng, Z. Wang and D. Zhao, Neighborhood matching network for entity alignment, in: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, ACL 2020, Online, July 5–10, 2020, D. Jurafsky, J. Chai, N. Schluter and J.R. Tetreault, eds, Association for Computational Linguistics, 2020, pp. 6477–6487.
[26]
Z. Wu, S. Pan, F. Chen, G. Long, C. Zhang and P.S. Yu, A comprehensive survey on graph neural networks, IEEE Trans. Neural Networks Learn. Syst. 32(1) (2021), 4–24.
[27]
W. Zeng, X. Zhao, W. Wang, J. Tang and Z. Tan, Degree-aware alignment for entities in tail, in: Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR 2020, Virtual Event, China, July 25–30, 2020, J. Huang, Y. Chang, X. Cheng, J. Kamps, V. Murdock, J. Wen and Y. Liu, eds, ACM, 2020, pp. 811–820.
[28]
F. Zhang, N.J. Yuan, D. Lian, X. Xie and W. Ma, Collaborative knowledge base embedding for recommender systems, in: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, August 13–17, 2016, B. Krishnapuram, M. Shah, A.J. Smola, C.C. Aggarwal, D. Shen and R. Rastogi, eds, ACM, 2016, pp. 353–362.
[29]
Q. Zhang, Z. Sun, W. Hu, M. Chen, L. Guo and Y. Qu, Multi-view knowledge graph embedding for entity alignment, in: Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence, IJCAI 2019, Macao, China, August 10–16, 2019, S. Kraus, ed., ijcai.org, 2019, pp. 5429–5435.
[30]
H. Zhu, R. Xie, Z. Liu and M. Sun, Iterative entity alignment via joint knowledge embeddings, in: Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence, IJCAI 2017, Melbourne, Australia, August 19–25, 2017, C. Sierra, ed., ijcai.org, 2017, pp. 4258–4264.
[31]
Y. Zhu, H. Liu, Z. Wu and Y. Du, Relation-aware neighborhood matching model for entity alignment, in: Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI 2021, Thirty-Third Conference on Innovative Applications of Artificial Intelligence, IAAI 2021, the Eleventh Symposium on Educational Advances in Artificial Intelligence, EAAI 2021, Virtual Event, February 2–9, 2021, AAAI Press, 2021, pp. 4749–4756, https://ojs.aaai.org/index.php/AAAI/article/view/16606.

Recommendations

Comments

Information & Contributors

Information

Published In

cover image AI Communications
AI Communications  Volume 37, Issue 1
2024
179 pages

Publisher

IOS Press

Netherlands

Publication History

Published: 01 January 2024

Author Tags

  1. Entity Alignment
  2. graph convolutional network
  3. relation alignment
  4. knowledge graphs

Qualifiers

  • Research-article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • 0
    Total Citations
  • 0
    Total Downloads
  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 10 Feb 2025

Other Metrics

Citations

View Options

View options

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media