Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
research-article

PAMDI: : Privacy aware missing data inference scheme for sparse mobile crowd sensing

Published: 01 January 2023 Publication History

Abstract

The ubiquity of mobile devices has birthed one of the most promising IoT applications called Mobile Crowd Sensing (MCS) wherein mobile devices carried around by a crowd are used to sense phenomena of interest. Subsequently, sensed data are collected, aggregated and analysed to extract useful information. Sparse Mobile Crowd Sensing (SMCS) aims at reducing the sensing overhead (e.g., battery consumption, incentive cost, etc.) by lowering the number of sensing tasks performed. Sensed data thus collected are used to infer missing values. However, it must be ensured that user’s private information (e.g., user’s home location) cannot be derived from the sensed data shared by a user. We propose a novel approach entitled ‘Privacy Aware Missing Data Inference Scheme for Sparse Mobile Crowd Sensing (PAMDI)’ which employs the concept of perceptual hash for ensuring privacy while trying to maintain performance guarantees. Simulation results with the help of two real-world data-sets point towards the feasibility of the proposed approach for provisioning user privacy. We use regression algorithms for missing data inference in PAMDI and find that linear regression algorithms work best with the proposed privacy approach as compared to non-linear regression algorithms. Moreover, we observe that inference accuracy is more or less maintained even after introducing privacy with the proposed approach. In particular, for the first data-set (Temperature data-set), the mean absolute error (MAE) and root mean squared error (RMSE) values obtained by the linear algorithms using the proposed approach are about 2.65 ∘ C and 2 9 ∘ C respectively. On the other hand, the corresponding MAE and RMSE values generated by the linear algorithms when no privacy is introduced are about 2.25 ∘ C and 2.85 ∘ C respectively. For non-linear algorithms, the corresponding error values are higher. We also observe the same trend in the results of the second data-set.

References

[1]
A.M.K. Abdulzahra and A.K.M. Al-Qurabat, A clustering approach based on fuzzy C-means in wireless sensor networks for IoT applications, Karbala International Journal of Modern Science 8(4) (2022), 579–595.
[2]
C. Acharjee and D. Suman, YOLOv3 based real time social distance violation detection in public places, in: 2021 International Conference on Computational Performance Evaluation (ComPE), IEEE, 2021, pp. 625–630.
[3]
Air Pollution in Seoul, Air Pollution Measurement Information in Seoul, Korea, https://www.kaggle.com/bappekim/air-pollution-in-seoul (accessed 10 August 2022).
[4]
A.K.M. Al-Qurabat, A lightweight Huffman-based differential encoding lossless compression technique in IoT for smart agriculture, Int. J. Com. Dig. Sys 11(1) (2022).
[5]
A.K.M. Al-Qurabat and S.A. Abdulzahra, An overview of periodic wireless sensor networks to the Internet of things, IOP Conference Series: Materials Science and Engineering 928 (2020), 032055.
[6]
A.K.M. Al-Qurabat, Z.A. Mohammed and Z.J. Hussein, Data traffic management based on compression and MDL techniques for smart agriculture in IoT, Wireless Personal Communications 120(3) (2021), 2227–2258.
[7]
A.K.M. Al-Qurabat, H.M. Salman, A. Alnasir and R. Finjan, Important extrema points extraction-based data aggregation approach for elongating the WSN lifetime, International Journal of Computer Applications in Technology 68(4) (2022), 357–368.
[8]
A. Ali, M.A. Qureshi, M. Shiraz and A. Shamim, Mobile crowd sensing based dynamic traffic efficiency framework for urban traffic congestion control, Sustainable Computing: Informatics and Systems 32 (2021), 100608.
[9]
M.A. Alswailim, H.S. Hassanein and M. Zulkernine, 2015, CRAWDAD dataset queensu/crowd_temperature (v. 2015-11-20): derived from roma/taxi (v. 2014-07-17).
[10]
B. Bamba, L. Liu, P. Pesti and T. Wang, Supporting anonymous location queries in mobile environments with privacygrid, in: Proceedings of the 17th International Conference on World Wide Web, 2008, pp. 237–246.
[11]
E. Bisong, Building Machine Learning and Deep Learning Models on Google Cloud Platform, Apress, Berkeley, CA, 2019, pp. 59–64.
[12]
L. Canzian and M. Musolesi, Trajectories of depression: Unobtrusive monitoring of depressive states by means of smartphone mobility traces analysis, in: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, 2015, pp. 1293–1304.
[13]
H. Cao, J. Sankaranarayanan, J. Feng, Y. Li and H. Samet, Understanding metropolitan crowd mobility via mobile cellular accessing data, ACM Transactions on Spatial Algorithms and Systems (TSAS) 5(2) (2019), 1–18.
[14]
J.M. Cecilia, J.-C. Cano, E. Hernández-Orallo, C.T. Calafate and P. Manzoni, Mobile crowdsensing approaches to address the Covid-19 pandemic in Spain, IET Smart Cities 2(2) (2020), 58–63.
[15]
L.-W. Chen and C.-Y. Cho, BiLight: A smart bicycle monitoring and finding system for rider safety based on IoT technologies, in: 2022 IEEE International Conference on Pervasive Computing and Communications Workshops and Other Affiliated Events (PerCom Workshops), IEEE, 2022, pp. 100–102.
[16]
A. Chio, D. Jiang, P. Gupta, G. Bouloukakis, R. Yus, S. Mehrotra and N. Venkatasubramanian, Smartspec: Customizable smart space datasets via event-driven simulations, in: 2022 IEEE International Conference on Pervasive Computing and Communications (PerCom), IEEE, 2022, pp. 152–162.
[17]
D.G. Costa, A. Damasceno and I. Silva, CitySpeed: A crowdsensing-based integrated platform for general-purpose monitoring of vehicular speeds in smart cities, Smart Cities 2(1) (2019), 46–65.
[18]
M.L. Daggitt, A. Noulas, B. Shaw and C. Mascolo, Tracking urban activity growth globally with big location data, Royal Society open science 3(4) (2016), 150688.
[19]
T.A.N. Dinh, A.D. Nguyen, T.T. Nguyen, T.H. Nguyen and P.L. Nguyen, Spatial-temporal coverage maximization in vehicle-based mobile crowdsensing for air quality monitoring, in: 2022 IEEE Wireless Communications and Networking Conference (WCNC), IEEE, 2022, pp. 1449–1454.
[20]
P. Diviacco, M. Iurcev, R.J. Carbajales, N. Potleca, A. Viola, M. Burca and A. Busato, Monitoring air quality in urban areas using a vehicle sensor network (VSN) crowdsensing paradigm, Remote Sensing 14(21) (2022), 5576.
[21]
Y. Du, X. Guo, C. Shi, Y. Zhu and B. Li, DSDCS: Detection of safe driving via crowd sensing, in: International Conference on Advanced Data Mining and Applications, Springer, Cham, 2018, pp. 170–177.
[22]
M. Duckham and L. Kulik, A formal model of obfuscation and negotiation for location privacy, Pervasive 3468 (2005), 152–170.
[23]
A.S. El-Wakeel, J. Li, A. Noureldin, H.S. Hassanein and N. Zorba, Towards a practical crowdsensing system for road surface conditions monitoring, IEEE Internet of Things Journal 5(6) (2018), 4672–4685.
[24]
A. Feged-Rivadeneira, F. Andrade-Rivas, F. González-Casabianca and F.J. Escobedo, Scaling patterns of human diseases and population size in Colombia, Global Environmental Change 75 (2022), 102546.
[25]
Z. Gao, Y. Huang, L. Zheng, H. Lu, B. Wu and J. Zhang, Protecting location privacy of users based on trajectory obfuscation in mobile crowdsensing, IEEE Transactions on Industrial Informatics 18(9) (2022), 6290–6299.
[26]
A. Ghosh, K. Kumari, S. Kumar, M. Saha, S. Nandi and S. Saha, Noiseprobe: Assessing the dynamics of urban noise pollution through participatory sensing, in: 2019 11th International Conference on Communication Systems and Networks (COMSNETS), IEEE, 2019, pp. 451–453.
[27]
B. Guo, H. Chen, Z. Yu, X. Xie, S. Huangfu and D. Zhang, FlierMeet: A mobile crowdsensing system for cross-space public information reposting, tagging, and sharing, IEEE Transactions on Mobile Computing 14(10) (2014), 2020–2033.
[28]
Y. Guo, B. Guo, Y. Liu, Z. Wang, Y. Ouyang and Z. Yu, Crowdsafe: Detecting extreme driving behaviors based on mobile crowdsensing, in: 2017 IEEE SmartWorld, Ubiquitous Intelligence and Computing, Advanced and Trusted Computed, Scalable Computing and Communications, Cloud and Big Data Computing, Internet of People and Smart City Innovation (SmartWorld/SCALCOM/UIC/ATC/CBDCom/IOP/SCI), IEEE, 2017, pp. 1–8.
[29]
R. Gupta, M. Bedi, P. Goyal, S. Wadhera and V. Verma, Analysis of Covid-19 tracking tool in India: Case study of Aarogya Setu mobile application, Digital Government: Research and Practice 1(4) (2020), 1–8.
[30]
S. He and K.G. Shin, Steering crowdsourced signal map construction via Bayesian compressive sensing, in: IEEE INFOCOM 2018-IEEE Conference on Computer Communications, IEEE, 2018, pp. 1016–1024.
[31]
Z. Jiang, H. Zhu, B. Zhou, C. Lu, M. Sun, X. Ma, X. Fan, C. Wang and L. Chen, CrowdPatrol: A mobile crowdsensing framework for traffic violation hotspot patrolling, IEEE Transactions on Mobile Computing (2021).
[32]
H. Jin, L. Su, B. Ding, K. Nahrstedt and N. Borisov, Enabling privacy-preserving incentives for mobile crowd sensing systems, in: IEEE 36th International Conference on Distributed Computing Systems (ICDCS), IEEE, Kyoto, 2016, pp. 344–353.
[33]
S. Joshi Manisha, V. Umadevi, S. Guggari, R. Kumar, A. Sonar and N. Sreedharala, Design of IoT-enabled, scalable mobile application for ASHA workers in Covid-19 data management, in: Lessons from Covid-19, Academic Press, pp. 341–370.
[34]
L.A. Kalogiros, K. Lagouvardos, S. Nikoletseas, N. Papadopoulos and P. Tzamalis, Allergymap: A hybrid mHealth mobile crowdsensing system for allergic diseases epidemiology: A multidisciplinary case study, in: 2018 IEEE International Conference on Pervasive Computing and Communications Workshops (PerCom Workshops), IEEE, 2018, pp. 597–602.
[35]
K. Kolasa, F. Mazzi, E. Leszczuk-Czubkowska, Z. Zrubka and M. Péntek, State of the art in adoption of contact tracing apps and recommendations regarding privacy protection and public health: Systematic review, JMIR mHealth and uHealth 9(6) (2021), e23250.
[36]
X. Kong, X. Song, F. Xia, H. Guo, J. Wang and A. Tolba, LoTAD: Long-term traffic anomaly detection based on crowdsourced bus trajectory data, World Wide Web 21 (2018), 825–847.
[37]
R. Kraft, M. Reichert and R. Pryss, Towards the interpretation of sound measurements from smartphones collected with mobile crowdsensing in the healthcare domain: An experiment with Android devices, Sensors 22(1) (2021), 170.
[38]
L. Liu, D. Racz, K. Vaillancourt, J. Michelman, M. Barnes, S. Mellem, P. Eastham et al., Smartphone-based hard-braking event detection at scale for road safety services, 2022, arXiv preprint.
[39]
X. Liu and Y. Chen, Group effect-based privacy-preserving data aggregation for mobile crowdsensing, Computer Networks 222 (2023), 109507.
[40]
A. Longo, M. Zappatore and M.A. Bochicchio, Apollon: Towards a citizen science methodology for urban environmental monitoring, Future Generation Computer Systems 112 (2020), 899–912.
[41]
N. Marchang, G.M. Meitei and T. Thakur, Task reduction using regression-based missing data imputation in sparse mobile crowdsensing, The Journal of Supercomputing (2022), 1–34.
[42]
M. Mehdi, D. Schwager, R. Pryss, W. Schlee, M. Reichert and F.J. Hauck, Towards automated smart mobile crowdsensing for tinnitus research, in: 2019 IEEE 32nd International Symposium on Computer-Based Medical Systems (CBMS), IEEE, 2019, pp. 75–80.
[43]
A. Mehrotra, F. Tsapeli, R. Hendley and M. Musolesi, MyTraces: Investigating correlation and causation between users’ emotional states and mobile phone interaction, Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies 1(3) (2017), 1–21.
[44]
Q. Miao, H. Lin, J. Hu and X. Wang, Privacy-preserved mobile crowdsensing for intelligent transportation systems, in: Intelligent Cyber-Physical Systems for Autonomous Transportation, Springer, Cham, 2022, pp. 267–280.
[45]
M.F. Mokbel, C.-Y. Chow and W.G. Aref, The new casper: Query processing for location services without compromising privacy, in: VLDB, Vol. 6, 2006, pp. 763–774.
[46]
W.B. Nedham and A.K.M. Al-Qurabat, An improved energy efficient clustering protocol for wireless sensor networks, in: 2022 International Conference for Natural and Applied Sciences (ICNAS), IEEE, 2022, pp. 23–28.
[47]
J. Ni, K. Zhang, X. Lin, Q. Xia and X.S. Shen, Privacy-preserving mobile crowdsensing for located-based applications, in: 2017 IEEE International Conference on Communications (ICC), IEEE, 2017, pp. 1–6.
[48]
A.L. Padilla-Ortiz, F.A. Machuca-Tzili and D. Ibarra-Zarate, Smartphones, a tool for noise monitoring and noise mapping: An overview, International Journal of Environmental Science and Technology (2022 May 13), 1–6.
[49]
F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel et al., Scikit-learn: Machine learning in Python, the Journal of machine Learning research 12 (2011), 2825–2830.
[50]
R. Pryss, Mobile crowdsensing in healthcare scenarios: Taxonomy, conceptual pillars, smart mobile crowdsensing services, in: Digital Phenotyping and Mobile Sensing: New Developments in Psychoinformatics, Springer International Publishing, Cham, 2022, pp. 305–320.
[51]
M. Raza, A.R. Barket, A.U. Rehman, A. Rehman and I. Ullah, Mobile crowdsensing based architecture for intelligent traffic prediction and quickest path selection, in: 2020 International Conference on UK-China Emerging Technologies (UCET), IEEE, 2020, pp. 1–4.
[52]
J. Rubio-Aparicio and J. Santa, Embedded crowdsensing unit for mobile urban pollution monitoring, IEEE Communications Magazine (2022).
[53]
I.D.I. Saeedi and A.K.M. Al-Qurabat, Perceptually important points-based data aggregation method for wireless sensor networks, Baghdad Science Journal 35 (2022), 0875.
[54]
I.D.I. Saeedi and A.K.M. Al-Qurabat, An energy-saving data aggregation method for wireless sensor networks based on the extraction of extrema points, AIP Conference Proceedings 2398 (2022), 050004.
[55]
I.H. Sarker, Machine learning: Algorithms, real-world applications and research directions, SN Computer Science 2(3) (2021), 1–21.
[56]
M. Silva, G. Signoretti, J. Oliveira, I. Silva and D.G. Costa, A crowdsensing platform for monitoring of vehicular emissions: A smart city perspective, Future Internet 11(1) (2019), 13.
[57]
V. Singh, D. Chander, U. Chhaparia and B. Raman, SafeStreet: An automated road anomaly detection and early-warning system using mobile crowdsensing, in: 2018 10th International Conference on Communication Systems and Networks (COMSNETS), IEEE, 2018, pp. 549–552.
[58]
D. Spathis, S. Servia-Rodriguez, K. Farrahi, C. Mascolo and J. Rentfrow, Passive mobile sensing and psychological traits for large scale mood prediction, in: Proceedings of the 13th EAI International Conference on Pervasive Computing Technologies for Healthcare, 2019, pp. 272–281.
[59]
L. Ting, T. Jung, H. Li, L. Cao, W. Wang, X.-Y. Li and Y. Wang, Scalable privacy-preserving participant selection in mobile crowd sensing, in: 2017 IEEE International Conference on Pervasive Computing and Communications (PerCom), IEEE, 2017, pp. 59–68.
[60]
L.R. Varshney, A. Vempaty and P.K. Varshney, Assuring privacy and reliability in crowdsourcing with coding, in: 2014 Information Theory and Applications Workshop (ITA), IEEE, 2014, pp. 1–6.
[61]
J. Wan, J. Liu, Z. Shao, A.V. Vasilakos, M. Imran and K. Zhou, Mobile crowd sensing for traffic prediction in Internet of vehicles, Sensors 16(1) (2016), 88.
[62]
E. Wang, M. Zhang, Y. Yang, Y. Xu and J. Wu, Exploiting outlier value effects in sparse urban crowdsensing, in: 2021 IEEE/ACM 29th International Symposium on Quality of Service (IWQOS), IEEE, 2021, pp. 1–10.
[63]
L. Wang, D. Zhang, D. Yang, B. Lim, X. Han et al., Sparse mobile crowdsensing with differential and distortion location privacy, IEEE Transactions on Information Forensics and Security, Institute of Electrical and Electronics Engineers 15 (2021), 2735–2749.
[64]
Y. Wang, Z. Cai, G. Yin, Y. Gao, X. Tong and G. Wu, An incentive mechanism with privacy protection in mobile crowdsourcing systems, Computer Networks 102 (2016), 157–171.
[65]
S. Wu, X. Wang, S. Wang, Z. Zhang and A.K. Tung, K-anonymity for crowdsourcing database, IEEE Transactions on Knowledge and Data Engineering 26(9) (2013), 2207–2221.
[66]
K. Xie, X. Li, X. Wang, G. Xie, J. Wen and D. Zhang, Active sparse mobile crowd sensing based on matrix completion, in: Proceedings of the 2019 International Conference on Management of Data, 2019, pp. 195–210.
[67]
Z. Xie, L. Hu, F. Wang, J. Li and K. Zhao, PEMM: A privacy-aware data aggregation solution for mobile sensing networks, in: Computational Intelligence and Intelligent Systems: 7th International Symposium, ISICA 2015, Guangzhou, China, November 21–22, 2015, Revised Selected Papers 7, pp. 474–482, Springer, Singapore, 2016.
[68]
Z. Xu, H. Zhang, Y. Liu and L. Mei, Crowd sensing of urban emergency events based on social media big data, in: 2014 IEEE 13th International Conference on Trust, Security and Privacy in Computing and Communications, IEEE, 2014, pp. 605–610.
[69]
C. Zauner, Implementation and benchmarking of perceptual image hash functions, Master’s thesis, Upper Austria University of Applied Sciences, Hagenberg Campus, 2010.
[70]
J. Zhang, V.S. Sheng, J. Wu and X. Wu, Multi-class ground truth inference in crowdsourcing with clustering, IEEE Transactions on Knowledge and Data Engineering 28(4) (2015), 1080–1085.
[71]
M. Zhang and Y. Chen, Inductive matrix completion based on graph neural networks, 2019, arXiv preprint.
[72]
S. Zhang, Machine learning-based health-related behavior detection using wearables, PhD diss., Northwestern University, 2022.
[73]
X. Zhao, N. Wang, R. Han, B. Xie, Y. Yu, M. Li and J. Ou, Urban infrastructure safety system based on mobile crowdsensing, International journal of disaster risk reduction 27 (2018), 427–438.
[74]
Y. Zhu, Z. Li, H. Zhu, M. Li and Q. Zhang, A compressive sensing approach to urban traffic estimation with probe vehicles, IEEE Transactions on Mobile Computing 12(11) (2013), 2289–2302.
[75]
P. Zuber and S. Cheerkoot-Jalim, SenseAPP: An IoT-based mobile crowdsensing application for smart cities, in: 2020 3rd International Conference on Emerging Trends in Electrical, Electronic and Communications Engineering (ELECOM), IEEE, 2020, pp. 47–52.

Recommendations

Comments

Information & Contributors

Information

Published In

cover image Journal of Ambient Intelligence and Smart Environments
Journal of Ambient Intelligence and Smart Environments  Volume 15, Issue 1
Current Trends in Energy Management, Sustainability and Security for Intelligent Environments
2023
109 pages

Publisher

IOS Press

Netherlands

Publication History

Published: 01 January 2023

Author Tags

  1. Privacy
  2. security
  3. mobile crowdsensing
  4. mobile and wearable computing
  5. data inference

Qualifiers

  • Research-article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • 0
    Total Citations
  • 0
    Total Downloads
  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 27 Dec 2024

Other Metrics

Citations

View Options

View options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media