Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
research-article

Online and offline communication architecture for vehicular ad-hoc networks using NS3 and SUMO simulators

Published: 01 January 2019 Publication History

Abstract

Vehicular Ad-hoc Network (VANET) is one of the future technologies that envisions the real-time vehicular communication. This technology uses the support of IEEE wireless communication protocols to successfully exchange messages between vehicles. The implementation and testing of VANET scenarios in real-time is challenging since it requires an expensive infrastructure. Hence, the simulation of VANET scenarios play an important role in evaluating the performance of these large-scale networks. However, the proper simulation of VANET scenarios should satisfy two main requirements: realistic mobility of vehicles on the roads and wireless network communication. A comparison of the various simulation tools that can be used for VANET scenarios has been undertaken in this work. The work also proposes an architecture for online and offline communication between Network Simulator 3 (NS3) and Simulation of Urban Mobility (SUMO) with public cloud support. The performance of the proposed architecture has been evaluated using various VANET simulation scenarios with varied number of vehicles along with real-time road traffic scenarios. The discussed and illustrated results show that the proposed architecture can be used for simulating various realistic VANET scenarios efficiently with a large number of vehicles in real-time.

References

[1]
S. Al-Sultan, M.M. Al-Doori, A.H. Al-Bayatti and H. Zedan, A comprehensive survey on vehicular ad hoc network, Journal of Network and Computer Applications 37 (2014), 380–392. ISSN.
[2]
R. Barr, Z.J. Haas and R. van Renesse, JiST: An efficient approach to simulation using virtual machines: Research articles, ACM Software Practice Experience 35(6) (2005), 539–576. ISSN.
[3]
M. Behrisch, L. Bieker, J. Erdmann and D. Krajzewicz, SUMO – Simulation of Urban MObility: An overview, in: Proceedings of the Third International Conference on Advances in System Simulation (SIMUL), 2011, pp. 63–68.
[4]
S. Biddlestone, K. Redmill, R. Miucic and Ü. Ozguner, An integrated 802.11p WAVE DSRC and vehicle traffic simulator with experimentally validated urban (LOS and NLOS) propagation models, IEEE Transactions on Intelligent Transportation Systems 13(4) (2012), 1792–1802. ISSN.
[5]
L. Bononi, M. Di Felice, M. Bertini and E. Croci, Parallel and distributed simulation of wireless vehicular ad hoc networks, in: Proceedings of the 9th ACM International Symposium on Modeling Analysis and Simulation of Wireless and Mobile Systems, MSWiM ’06, ACM, New York, NY, USA, 2006, pp. 28–35. ISBN 1-59593-477-4.
[6]
F.R. Broome and D.B. Meixler, The TIGER database structure, Cartography and Geographic Information Systems 17 (2013), 39–47.
[7]
Canu Mobility Simulation Environment, Accessed: 2018-01-05, http://vanet.eurecom.fr.
[8]
Q. Chen, F. Schmidt-Eisenlohr, D. Jiang, M. Torrent-Moreno, L. Delgrossi and H. Hartenstein, Overhaul of Ieee 802.11 modeling and simulation in Ns-2, in: Proceedings of the 10th ACM Symposium on Modeling, Analysis, and Simulation of Wireless and Mobile Systems, MSWiM ’07, ACM, New York, NY, USA, 2007, pp. 159–168. ISBN 978-1-59593-851-0.
[9]
D.R. Choffnes and F.E. Bustamante, An integrated mobility and traffic model for vehicular wireless networks, in: Proceedings of the 2nd ACM International Workshop on Vehicular Ad Hoc Networks, VANET ’05, ACM, New York, NY, USA, 2005, pp. 69–78. ISBN 1-59593-141-4.
[10]
Corridor Simulation (CORSIM) Microscopic Traffic Simulation Model, Accessed: 2018-01-05, https://mctrans.ce.ufl.edu/mct/index.php/tsis-corsim/.
[11]
M. Fiore, J. Harri, F. Filali and C. Bonnet, Vehicular mobility simulation for VANETs, in: Proceedings of the 40th Annual Simulation Symposium, ANSS ’07, IEEE Computer Society, Washington, DC, USA, 2007, pp. 301–309. ISBN 0-7695-2814-7.
[12]
E. Giordano, E. De Sena, G. Pau and M. Gerla, VERGILIUS: A scenario generator for VANET, in: Proceedings of the 71st IEEE Vehicular Technology Conference, 2010, pp. 1–5. ISSN.
[13]
E. Giordano, R. Frank, G. Pau and M. Gerla, CORNER: A step towards realistic simulations for VANET, in: Proceedings of the 7th ACM International Workshop on VehiculAr InterNETworking, VANET ’10, ACM, New York, NY, USA, 2010, pp. 41–50. ISBN 978-1-4503-0145-9.
[14]
B.S. Gukhool and S. Cherkaoui, IEEE 802.11p Modeling in NS-2, in: Proceedings of the 33rd IEEE Conference on Local Computer Networks (LCN), 2008, pp. 622–626. ISSN.
[15]
M.M. Haklay and P. Weber, OpenStreetMap: User-generated street maps, IEEE Pervasive Computing 7(4) (2008), 12–18. ISSN.
[16]
J.G. Haran, K. Mohammadian and P. Nelson, Intelligent traveler assistant (ITA) simulation platform design, in: Proceedings of the 5th Annual International Conference on Mobile and Ubiquitous Systems: Computing, Networking, and Services, Mobiquitous ’08, ICST (Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering), ICST, Brussels, Belgium, Belgium, 2008, pp. 12–1126. ISBN 978-963-9799-27-1.
[17]
J. Härri, P. Cataldi, D. Krajzewicz, R.J. Blokpoel, Y. Lopez, J. Leguay, C. Bonnet and L. Bieker, Modeling and simulating ITS applications with iTETRIS, in: Proceedings of the 6th ACM Workshop on Performance Monitoring and Measurement of Heterogeneous Wireless and Wired Networks, PM2HW2N ’11, ACM, New York, NY, USA, 2011, pp. 33–40. ISBN 978-1-4503-0902-8.
[18]
K. Ibrahim and M.C. Weigle, ASH: Application-aware SWANS with highway mobility, in: IEEE INFOCOM Workshops, 2008, pp. 1–6.
[19]
Introduction to TraCI, Accessed: 2018-01-05, https://sumo.dlr.de/userdoc/TraCI.html.
[20]
T. Issariyakul and E. Hossain, Introduction to Network Simulator NS2, 1st edn, Springer Publishing Company, Incorporated, 2010. ISBN 1441944125, 9781441944122.
[21]
iTETRIS Project, Accessed: 2018-01-05, http://www.ict-itetris.eu/.
[22]
B. Jarupan, Y. Balcioglu, E. Ekici, F. Ozguner and U. Ozguner, An integrated wireless intersection simulator for collision warning systems in vehicular networks, in: Proceedings of the IEEE International Conference on Vehicular Electronics and Safety, 2008, pp. 340–345.
[23]
Java in Simulation Time Scalable Wireless Ad-hoc Network Simulator, Accessed: 2018-01-05, http://jist.ece.cornell.edu.
[24]
F.K. Karnadi, Z.H. Mo and K. Lan, Rapid generation of realistic mobility models for VANET, in: Proceedings of the IEEE Wireless Communications and Networking Conference, 2007, pp. 2506–2511. ISSN.
[25]
M. Karoui, M. Kassab, H. Aniss and M. Berbineau, Enhance VEINS simulator for realistic evaluation scenarios, in: Communication Technologies for Vehicles, Springer, Toulouse, France, 2017, pp. 128–140.
[26]
M. Killat, F. Schmidt-Eisenlohr, H. Hartenstein, C. Rössel, P. Vortisch, S. Assenmacher and F. Busch, Enabling efficient and accurate large-scale simulations of VANETs for vehicular traffic management, in: Proceedings of the 4th ACM International Workshop on Vehicular Ad Hoc Networks, VANET ’07, ACM, New York, NY, USA, 2007, pp. 29–38. ISBN 978-1-59593-739-1.
[27]
S. Kim, W. Suh and J. Kim, Traffic simulation software: Traffic flow characteristics in CORSIM, in: Proceedings of the International Conference on Information Science Applications (ICISA), 2014, pp. 1–3. ISSN.
[28]
W. Liang, Z. Li, H. Zhang, S. Wang and R. Bie, Vehicular ad hoc networks: Architectures, research issues, methodologies, challenges, and trends, International Journal of Distributed Sensor Networks 11(8) (2015), 745303.
[29]
B. Liu, B. Khorashadi, H. Du, D. Ghosal, C.-N. Chuah and M. Zhang, VGSim: An integrated networking and microscopic vehicular mobility simulation platform, IEEE Communications Magazine 47(5) (2009), 134–141. ISSN.
[30]
C. Lochert, A. Barthels, A. Cervantes, M. Mauve and M. Caliskan, Multiple simulator interlinking environment for IVC, in: Proceedings of the 2nd ACM International Workshop on Vehicular Ad Hoc Networks, VANET ’05, ACM, New York, NY, USA, 2005, pp. 87–88. ISBN 1-59593-141-4.
[31]
R. Mangharam, D. Weller, R. Rajkumar, P. Mudalige and F. Bai, GrooveNet: A hybrid simulator for vehicle-to-vehicle networks, in: Proceedings of the 3rd Annual International Conference on Mobile and Ubiquitous Systems: Networking Services, 2006, pp. 1–8.
[32]
R.I. Meneguette, G.P.R. Filho, D.L. Guidoni, G. Pessin, L.A. Villas and J. Ueyama, Increasing intelligence in inter-vehicle communications to reduce traffic congestions: Experiments in urban and highway environments, PLOS ONE 11(8) (2016), 1–25.
[33]
H. Noori and M. Valkama, Impact of VANET-based V2X communication using IEEE 802.11p on reducing vehicles traveling time in realistic large scale urban area, in: Proceedings of the International Conference on Connected Vehicles and Expo (ICCVE), 2013, pp. 654–661. ISSN.
[34]
Omnet++ simulator, Accessed: 2018-01-05, https://omnetpp.org.
[35]
[36]
S. Papanastasiou, J. Mittag, E.G. Strom and H. Hartenstein, Bridging the gap between physical layer emulation and network simulation, in: Proceedings of the IEEE Wireless Communication and Networking Conference, 2010, pp. 1–6. ISSN.
[37]
M. Piórkowski, M. Raya, A.L. Lugo, P. Papadimitratos, M. Grossglauser and J.-P. Hubaux, TraNS: Realistic joint traffic and network simulator for VANETs, ACM SIGMOBILE Mobile Computing and Communications Review 12(1) (2008), 31–33. ISSN.
[38]
G.F. Riley and T.R. Henderson, The NS-3 network simulator, in: Modeling and Tools for Network Simulation, K. Wehrle, M. Güneş and J. Gross, eds, Springer, Berlin Heidelberg, Berlin, Heidelberg, 2010, pp. 15–34.
[39]
B. Schünemann, V2X simulation runtime infrastructure VSimRTI: An assessment tool to design smart traffic management systems, Computer Networks 55(14) (2011), 3189–3198. ISSN.
[40]
K. Shafiee, J.B. Lee, V.C.M. Leung and G. Chow, Modeling and simulation of vehicular networks, in: Proceedings of the 1st ACM International Symposium on Design and Analysis of Intelligent Vehicular Networks and Applications, DIVANet ’11, ACM, New York, NY, USA, 2011, pp. 77–86. ISBN 978-1-4503-0904-2.
[41]
Simulation of Urban Mobility (SUMO), Accessed: 2018-01-05, https://sumo.dlr.de/index.html.
[42]
C. Sommer, D. Eckhoff, R. German and F. Dressler, A computationally inexpensive empirical model of IEEE 802.11p radio shadowing in urban environments, in: Proceedings of the 8th International Conference on Wireless on-Demand Network Systems and Services, 2011, pp. 84–90.
[43]
C. Sommer, R. German and F. Dressler, Bidirectionally coupled network and road traffic simulation for improved IVC analysis, IEEE Transactions on Mobile Computing 10(1) (2011), 3–15. ISSN.
[44]
R. Stanica, E. Chaput and A.-L. Beylot, Simulation of vehicular ad-hoc networks: Challenges, review of tools and recommendations, Computer Networks 55(14) (2011), 3179–3188. ISSN.
[45]
H. Stübing, M. Bechler, D. Heussner, T. May, I. Radusch, H. Rechner and P. Vogel, simTD: A car-to-x system architecture for field operational tests, IEEE Communications Magazine 48(5) (2010), 148–154. ISSN.
[46]
The Network Simulator – NS-2, Accessed: 2018-01-05. https://www.isi.edu/nsnam/ns/.
[47]
The Network Simulator – NS-3, Accessed: 2018-01-05. https://www.nsnam.org/docs/tutorial/html/.
[48]
A. Tomandl, D. Herrmann, K. Fuchs, H. Federrath and F. Scheuer, VANETsim: An open source simulator for security and privacy concepts in VANETs, in: Proceedings of the International Conference on High Performance Computing Simulation (HPCS), 2014, pp. 543–550.
[49]
Topologically Integrated Geographic Encoding and Referencing System, Accessed: 2018-01-05, https://www.census.gov/geo/maps-data/data/tiger.html.
[50]
A. Varga and R. Hornig, An overview of the OMNeT++ simulation environment, in: Proceedings of the 1st International Conference on Simulation Tools and Techniques for Communications, Networks and Systems & Workshops, Simutools ’08, ICST (Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering), ICST, Brussels, Belgium, Belgium, 2008, pp. 60–16010. http://dl.acm.org/citation.cfm?id=1416222.1416290. ISBN 978-963-9799-20-2.
[51]
Verkehr in Stadten Simulationsmodell (VISSIM), Accessed: 2018-01-05, http://www.vissim.de/vissim/.
[52]
C.-X. Wang, X. Cheng and D. Laurenson, Vehicle-to-vehicle channel modeling and measurements: Recent advances and future challenges, IEEE Communications Magazine 47(11) (2009), 96–103. ISSN.
[53]
S. Wang and C. Lin, NCTUns 6.0: A simulator for advanced wireless vehicular network research, in: Proceedings of the 71st IEEE Vehicular Technology Conference, 2010, pp. 1–2. ISSN.
[54]
A. Wegener, M. Piórkowski, M. Raya, H. Hellbrück, S. Fischer and J.-P. Hubaux, TraCI: An interface for coupling road traffic and network simulators, in: Proceedings of the 11th Communications and Networking Simulation Symposium, CNS ’08, ACM, New York, NY, USA, 2008, pp. 155–163. ISBN 1-56555-318-7.
[55]
E. Weingärtner, F. Schmidt, H.V. Lehn, T. Heer and K. Wehrle, SliceTime: A platform for scalable and accurate network emulation, in: Proceedings of the 8th USENIX Conference on Networked Systems Design and Implementation, NSDI’11, USENIX Association, Berkeley, CA, USA, 2011, pp. 253–266.
[56]
E. Weingärtner, H. Vom Lehn and K. Wehrle, A performance comparison of recent network simulators, in: Proceedings of the IEEE International Conference on Communications, ICC’09, 2009, pp. 1287–1291. ISBN 978-1-4244-3434-3.
[57]
A. Widodo and T. Hasegawa, A new inter-vehicle communication system for intelligent transport systems and an autonomous traffic flow simulator, in: Proceedings of the 5th IEEE International Symposium on Spread Spectrum Techniques and Applications, Vol. 1, 1998, pp. 82–861.
[58]
S. Yousefi, M.S. Mousavi and M. Fathy, Vehicular ad hoc networks (VANETs): Challenges and perspectives, in: Proceedings of the 6th International Conference on ITS Telecommunications, 2006, pp. 761–766.
[59]
X. Zeng, R. Bagrodia and M. Gerla, GloMoSim: A library for parallel simulation of large-scale wireless networks, ACM SIGSIM Simulation Digest 28(1) (1998), 154–161. ISSN.

Index Terms

  1. Online and offline communication architecture for vehicular ad-hoc networks using NS3 and SUMO simulators
          Index terms have been assigned to the content through auto-classification.

          Recommendations

          Comments

          Information & Contributors

          Information

          Published In

          cover image Journal of High Speed Networks
          Journal of High Speed Networks  Volume 25, Issue 3
          2019
          107 pages

          Publisher

          IOS Press

          Netherlands

          Publication History

          Published: 01 January 2019

          Author Tags

          1. Intelligent transportation systems
          2. vehicular ad-hoc networks
          3. simulation tools
          4. network simulators
          5. traffic simulators
          6. traffic control interface

          Qualifiers

          • Research-article

          Contributors

          Other Metrics

          Bibliometrics & Citations

          Bibliometrics

          Article Metrics

          • 0
            Total Citations
          • 0
            Total Downloads
          • Downloads (Last 12 months)0
          • Downloads (Last 6 weeks)0
          Reflects downloads up to 17 Oct 2024

          Other Metrics

          Citations

          View Options

          View options

          Get Access

          Login options

          Media

          Figures

          Other

          Tables

          Share

          Share

          Share this Publication link

          Share on social media