Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
research-article

BMCSA: : Multi-feature spatial convolution semantic matching model based on BERT

Published: 01 January 2022 Publication History

Abstract

This paper proposes a multi-feature spatial convolutional semantic matching model (BMCSA) based on BERT by enriching different feature spatial information of semantic features. BMCSA employs the BERT model to extract the semantic features of the text, then uses the two-dimensional convolutional network to extract different feature spatial information, and finally combines the Attention mechanism to capture the global feature spatial information. We use two different semantic matching data sets and a text inference data set to verify the effectiveness of the proposed model. Experimental results prove that BMCSA is better than the baseline model.

References

[1]
Zhang X., Sun X. and Wang H., Duplicate question identification by integrating framenet with neural networks, 32(1), 2018.
[2]
Chen J., Chen Q., Liu X., Yang H., Lu D. and Tang B., The bq corpus:A large-scale domainspecific chinese corpus for sentence semantic equivalence identification. (2018), pp. 4946–4951.
[3]
Li Y., McLean D., Bandar Z.A., James O’shea D. and Crockett K., Sentence similarity based on semantic nets and corpus statistics, IEEE Transactions on Knowledge and Data Engineering 18(8) (2006), 1138–1150.
[4]
Samuel Bowman R., Angeli G., Potts C. and Christopher Manning D., A large annotated corpus for learning natural language inference. arXiv preprint arXiv:1508.05326, 2015.
[5]
Cai L.-Q., Wei M., Zhou S.-T. and Yan X., Intelligent question answering in restricted domains using deep learning and question pair matching, Ieee Access 8 (2020), 32922–32934.
[6]
Devlin J., Chang M.-W., Lee K. and Toutanova K., Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018.
[7]
Kalchbrenner N., Grefenstette E. and Blunsom P., A convolutional neural network for modelling sentences. arXiv preprint arXiv:1404.2188, 2014.
[8]
Socher R., Huang E., Pennin J., Manning C.D. and Ng A., Dynamic pooling and unfolding recursive autoencoders for paraphrase detection, Advances in Neural Information Processing Systems 24, 2011.
[9]
Kim Y., Convolutional neural networks for sentence classification. Eprint Arxiv, 2014.
[10]
Elman J.L., Finding structure in time, Cognitive Science 14(2) (1990), 179–211.
[11]
Chen Q., Hu Q., Huang J.X. and He L., Ca-rnn: using context-aligned recurrent neural networks for modeling sentence similarity, 32(1), 2018.
[12]
Ankur Parikh P., Täckström O., Das D. and Uszkoreit J., A decomposable attention model for natural language inference. arXiv preprint arXiv:1606.01933, 2016.
[13]
Lai S., Xu L., Liu K. and Zhao J., Recurrent convolutional neural networks for text classification. 2015.
[14]
Chopra S., Hadsell R. and LeCun Y., Learning a similarity metric discriminatively, with application to face verification, 1 (2005), 539–546.
[15]
Kim S., Kang I. and Kwak N., Semantic sentence matching with densely-connected recurrent and coattentive information, 33(01) (2019), 6586–6593.
[16]
Vaswani A., Shazeer N., Parmar N., Uszkoreit J., Jones L., Gomez A.N., Kaiser Ł. and Polosukhin I., Attention is all you need. (2017), pp. 5998–6008.
[17]
Lan Z., Chen M., Goodman S., Gimpel K., Sharma P. and Soricut R., Albert: A lite bert for self-supervised learning of language representations. arXiv preprint arXiv:1909.11942, 2019.
[18]
Liu Y., Ott M., Goyal N., Du J., Joshi M., Chen D., Levy O., Lewis M., Zettlemoyer L. and Stoyanov V., Roberta:A robustly optimized bert pretraining approach. arXiv preprint arXiv:1907.11692, 2019.
[19]
Zhang P., Huang X., Wang Y., Jiang C., He S. and Wang H., Semantic similarity computing model based on multi model fine-grained nonlinear fusion, IEEE Access 9 (2021), 8433–8443.
[20]
Yu R., Lu W., Li Y., Yu J., Zhang G. and Zhang X., Sentence semantic matching with hierarchical cnn based on dimension-augmented representation. (2021), pp. 1–8.
[21]
Shen Y., He X., Gao J., Deng L. and Mesnil G., A latent semantic model with convolutionalpooling structure for information retrieval. (2014), pp. 101–110.
[22]
Huang P.-S., He X., Gao J., Deng L., Acero A. and Heck L., Learning deep structured semantic models for web search using clickthrough data. (2013), pp. 2333–2338.
[23]
Hu B., Lu Z., Li H. and Chen Q., Convolutional neural network architectures for matching natural language sentences. (2014), pp. 2042–2050.
[24]
Yin W. and Schütze H., Convolutional neural network for paraphrase identification. (2015), pp. 901–911.
[25]
Yin W., Schütze H., Xiang B. and Zhou B., Abcnn: Attention-based convolutional neural network for modeling sentence pairs, Transactions of the Association for Computational Linguistics 4 (2016), 259–272.
[26]
Gu J.-C., Ling Z.-H. and Liu Q., Utterance-toutterance interactive matching network for multi-turn response selection in retrieval-based chatbots, IEEE/ACM Transactions on Audio, Speech, and Language Processing 28 (2019), 369–379.
[27]
Yang D., Ke X., Yu Q. and Yang B., Enhanced lstm: a text matching aggregation model, 9 (2020), 659–663.
[28]
Zhao S., Huang Y., Su C., Li Y. and Wang F., Interactive attention networks for semantic text matching. (2020), pp. 861–870.
[29]
Liu M., Zhang Y., Xu J. and Chen Y., Deep bi-directional interaction network for sentence matching, Applied Intelligence (2021), pp. 1–25.
[30]
Zhang K., Lv G., Wu L., Chen E., Liu Q. and Wang M., Ladra-net: Locally aware dynamic reread attention net for sentence semantic matching, IEEE Transactions on Neural Networks and Learning Systems (2021), pp. 1–14.
[31]
Tan M., dos Santos C., Xiang B. and Zhou B., Lstm-based deep learning models for non-factoid answer selection. arXiv preprint arXiv:1511.04108, 2015.
[32]
Chen J., Zhu X., Sang J. and Gong L., Sentence pair similarity modeling based on weighted interaction of multisemantic embedding matrix. (2020), pp. 1118–1123.
[33]
Neculoiu P., Versteegh M. and Rotaru M., Learning text similarity with siamese recurrent networks. (2016), pp. 148–157.
[34]
Wang Z., Hamza W. and Florian R., Bilateral multiperspective matching for natural language sentences. arXiv preprint arXiv:1702.03814, 2017.
[35]
Huang Z., Xu W. and Yu K., Bidirectional lstm-crf models for sequence tagging. arXiv preprint arXiv:1508.01991, 2015.
[36]
Yuan Z. and Jun S., Siamese network cooperating with multi-head attention for semantic sentence matching. (2020), pp. 215–218.
[37]
Cho K., Van Merriënboer B., Gulcehre C., Bahdanau D., Bougares F., Schwenk H. and Bengio Y., Learning phrase representations using rnn encoder-decoder for statistical machine translation. arXivpreprint arXiv:1406.1078, 2014.
[38]
Reimers N. and Gurevych I., Sentence-bert: Sentence embeddings using siamese bert-networks. arXiv preprint arXiv:1908.10084, 2019.
[39]
Van Nguyena K., Duy Nguyena N., Nguyen-Thuan Doa P., Gia-Tuan Nguyena A. and Luu-Thuy Nguyena N., Vireader: A wikipedia-based vietnamese reading comprehension system using transfer learning, Journal of Intelligent & Fuzzy Systems 1 (2021), 1–5.
[40]
Lan Z., Chen M., Goodman S., Gimpel K., Sharma P. and Soricut R., Albert: A lite bert for self-supervised learning of language representations. arXiv preprint arXiv:1909.11942, 2019.
[41]
Mikolov T., Chen K., Corrado G. and Dean J., Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781, 2013.
[42]
Pennington J., Socher R. and Christopher Manning D., Manning, Glove: Global vectors for word representation. (2014), pp. 1532–1543.
[43]
A. financial, ant financial artificial competition.
[44]
Yang Y., Zhang Y., Tar C. and Baldridge J., Paws-x: A cross-lingual adversarial dataset for paraphrase identification. arXiv preprint arXiv:1908.11828, 2019.
[45]
Hu H., Richardson K., Xu L., Li L., Kuebler S. and Moss L., Ocnli: Original chinese natural language inference. In Findings of EMNLP, 2020.
[47]
Papineni K., Roukos S., Ward T. and Zhu W.-J., Bleu: a method for automatic evaluation of machine translation. In Proceedings of the 40th annual meeting of the Association for Computational Linguistics, (2002), pp. 311–318.

Cited By

View all
  • (2023)Integrating BERT Embeddings and BiLSTM for Emotion Analysis of DialogueComputational Intelligence and Neuroscience10.1155/2023/66184522023Online publication date: 1-Jan-2023

Index Terms

  1. BMCSA: Multi-feature spatial convolution semantic matching model based on BERT
          Index terms have been assigned to the content through auto-classification.

          Recommendations

          Comments

          Information & Contributors

          Information

          Published In

          cover image Journal of Intelligent & Fuzzy Systems: Applications in Engineering and Technology
          Journal of Intelligent & Fuzzy Systems: Applications in Engineering and Technology  Volume 43, Issue 4
          2022
          1429 pages

          Publisher

          IOS Press

          Netherlands

          Publication History

          Published: 01 January 2022

          Author Tags

          1. Semantic matching
          2. BERT
          3. CNN
          4. Attention mechanism

          Qualifiers

          • Research-article

          Contributors

          Other Metrics

          Bibliometrics & Citations

          Bibliometrics

          Article Metrics

          • Downloads (Last 12 months)0
          • Downloads (Last 6 weeks)0
          Reflects downloads up to 18 Feb 2025

          Other Metrics

          Citations

          Cited By

          View all
          • (2023)Integrating BERT Embeddings and BiLSTM for Emotion Analysis of DialogueComputational Intelligence and Neuroscience10.1155/2023/66184522023Online publication date: 1-Jan-2023

          View Options

          View options

          Figures

          Tables

          Media

          Share

          Share

          Share this Publication link

          Share on social media