Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
research-article

Quality-based model for effective and robust multi-user pay-as-you-go ontology matching

Published: 01 January 2016 Publication History

Abstract

Using a pay-as-you-go strategy, we allow for a community of users to validate or invalidate mappings obtained by an automatic ontology matching system using consensus for each mapping. The ultimate objectives are effectiveness – improving the quality of the obtained alignment (set of mappings) measured in terms of F-measure as a function of the number of user interactions – and robustness – making the system as much as possible impervious to user validation errors. Our strategy consists of two major steps: candidate mapping selection, which ranks mappings based on their perceived quality so that users are presented first with those mappings with lowest quality, and feedback propagation, which seeks to validate or invalidate those mappings that are perceived to be similar to the mappings already presented to the users for validation. The purpose of these two strategies is twofold: achieve greater improvements earlier and minimize overall user interaction. There are three important features of our approach: the use of a dynamic ranking mechanism to adapt to the new conditions after each user interaction, the presentation of each mapping for validation more than once – revalidation – because of possible user errors, and the immediate propagation of the user input on a mapping without first achieving consensus for that mapping. We study extensively the effectiveness and robustness of our approach as several of these parameters change, namely the error and revalidation rates, as a function of the number of iterations, to provide conclusive guidelines for the design and implementation of multi-user feedback ontology matching systems.

References

[1]
K. Belhajjame, N.W. Paton, A.A.A. Fernandes, C. Hedeler and S.M. Embury, User feedback as a first class citizen in information integration systems, in: CIDR Conference on Innovative Data Systems Research, 2011, pp. 175–183.
[2]
J. Bourdaillet, S. Roy, G. Jung and Y.-A. Sun, Crowdsourcing translation by leveraging tournament selection and lattice-based string alignment, in: AAAI Conference on Human Computation and Crowdsourcing (HCOMP), Vol. WS-13-18, AAAI, 2013.
[3]
I.F. Cruz, F. Loprete, M. Palmonari, C. Stroe and A. Taheri, Pay-as-you-go multi-user feedback model for ontology matching, in: International Conference on Knowledge Engineering and Knowledge Management (EKAW), K. Janowicz, S. Schlobach, P. Lambrix and E. Hyvönen, eds, Springer, 2014, pp. 80–96. https://doi.org/10.1007/978-3-319-13704-9.
[4]
I.F. Cruz, F. Palandri Antonelli and C. Stroe, AgreementMaker: Efficient matching for large real-world schemas and ontologies, PVLDB 2(2) (2009), 1586–1589.
[5]
I.F. Cruz, F. Palandri Antonelli and C. Stroe, Efficient selection of mappings and automatic quality-driven combination of matching methods, in: ISWC International Workshop on Ontology Matching (OM), P. Shvaiko, J. Euzenat, F. Giunchiglia, H. Stuckenschmidt, N. Fridman Noy and A. Rosenthal, eds, CEUR Workshop Proceedings, Vol. 551, 2009, pp. 49–60.
[6]
I.F. Cruz, C. Stroe and M. Palmonari, Interactive user feedback in ontology matching using signature vectors, in: IEEE International Conference on Data Engineering (ICDE), A. Kementsietsidis and M.A. Vaz Salles, eds, 2012, pp. 1321–1324. https://doi.org/10.1109/ICDE.2012.137.
[7]
I.F. Cruz and W. Sunna, Structural alignment methods with applications to geospatial ontologies, Transactions in GIS 12(6) (2008), 683–711, Special Issue on Semantic Similarity Measurement and Geospatial Applications.
[8]
G. Demartini, D.E. Difallah and P. Cudré-Mauroux, ZenCrowd: Leveraging probabilistic reasoning and crowdsourcing techniques for large-scale entity linking, in: International World Wide Web Conference (WWW), A. Mille, F.L. Gandon, J. Misselis, M. Rabinovich and S. Staab, eds, ACM, New York, NY, USA, 2012, pp. 469–478. https://doi.org/10.1145/2187836.2187900.
[9]
S. Duan, A. Fokoue and K. Srinivas, One size does not fit all: Customizing ontology alignment using user feedback, in: International Semantic Web Conference (ISWC), P.F. Patel-Schneider, Y. Pan, P. Hitzler, P. Mika, L. Zhang, J.Z. Pan, I. Horrocks and B. Glimm, eds, Lecture Notes in Computer Science, Vol. 6496, Springer, 2010, pp. 177–192. https://doi.org/10.1007/978-3-642-17746-0.
[10]
J. Euzenat and P. Shvaiko, Ontology Matching, Springer-Verlag, Heidelberg (DE), 2007.
[11]
E. Jiménez-Ruiz, B. Cuenca Grau, Y. Zhou and I. Horrocks, Large-scale interactive ontology matching: Algorithms and implementation, in: European Conference on Artificial Intelligence (ECAI), L. De Raedt, C. Bessière, D. Dubois, P. Doherty, P. Frasconi, F. Heintz and P.J.F. Lucas, eds, Vol. 242, 2012, pp. 444–449. https://doi.org/10.3233/978-1-61499-098-7-444.
[12]
V. Jirkovský and R. Ichise, MAPSOM: User involvement in ontology matching, in: Joint International Semantic Technology Conference (JIST), T. Supnithi, T. Yamaguchi, J.Z. Pan, V. Wuwongse and M. Buranarach, eds, Springer, 2014, pp. 348–363. https://doi.org/10.1007/978-3-319-15615-6_12.
[13]
C.D. Manning, P. Raghavan and H. Schütze, Introduction to Information Retrieval, Vol. 1, Cambridge University Press, Cambridge, 2008.
[14]
R. McCann, W. Shen and A. Doan, Matching schemas in online communities: A web 2.0 approach, in: IEEE International Conference on Data Engineering (ICDE), G. Alonso, J.A. Blakeley and A.L.P. Chen, eds, IEEE, 2008, pp. 110–119. https://doi.org/10.1109/ICDE.2008.4497419.
[15]
C. Meilicke, H. Stuckenschmidt and A. Tamilin, Supporting manual mapping revision using logical reasoning, in: National Conference on Artificial Intelligence, D. Fox and C.P. Gomes, eds, AAAI Press, 2008, pp. 1213–1218.
[16]
N.F. Noy and M.A. Musen, The PROMPT suite: Interactive tools for ontology merging and mapping, International Journal of Human-Computer Studies 59 (2003), 983–1024.
[17]
F. Osorno-Gutierrez, N.W. Paton and A.A.A. Fernandes, Crowdsourcing feedback for pay-as-you-go data integration, in: VLDB Workshop on Databases and Crowdsourcing (DBCrowd), R. Cheng, A. Das Sarma, S. Maniu and P. Senellart, eds, Vol. 1025, 2013, pp. 32–37.
[18]
H. Paulheim, S. Hertling and D. Ritze, Towards evaluating interactive ontology matching tools, in: European Semantic Web Conference (ESWC), P. Cimiano, Ó. Corcho, V. Presutti, L. Hollink, S. Rudolph, eds, Springer, 2013, pp. 31–45. https://doi.org/10.1007/978-3-642-38288-8_3.
[19]
C. Sarasua, E. Simperl and N. Fridman Noy, CrowdMap: Crowdsourcing ontology alignment with microtasks, in: International Semantic Web Conference (ISWC), P. Cudré-Mauroux, J. Heflin, E. Sirin, T. Tudorache, J. Euzenat, M. Hauswirth, J.X. Parreira, J. Hendler, G. Schreiber, A. Bernstein and E. Blomqvist, eds, Lecture Notes in Computer Science, Vol. 7649, Springer, 2012, pp. 525–541. https://doi.org/10.1007/978-3-642-35176-1_33.
[20]
B. Settles, Active learning literature survey, Technical report, University of Wisconsin, Madison, 2009.
[21]
F. Shi, J. Li, J. Tang, G. Xie and H. Li, Actively learning ontology matching via user interaction, in: International Semantic Web Conference (ISWC), A. Bernstein, D.R. Karger, T. Heath, L. Feigenbaum, D. Maynard, E. Motta and K. Thirunarayan, eds, Lecture Notes in Computer Science, Vol. 5823, Springer, 2009, pp. 585–600. https://doi.org/10.1007/978-3-642-04930-9_37.
[22]
H.-V. To, R. Ichise and H.-B. Le, An adaptive machine learning framework with user interaction for ontology matching, in: IJCAI Workshop on Information Integration on the Web, 2009, pp. 35–40.
[23]
C.J. Zhang, L. Chen, H.V. Jagadish and C.C. Cao, Reducing uncertainty of schema matching via crowdsourcing, PVLDB 6(9) (2013), 757–768.

Index Terms

  1. Quality-based model for effective and robust multi-user pay-as-you-go ontology matching1
        Index terms have been assigned to the content through auto-classification.

        Recommendations

        Comments

        Information & Contributors

        Information

        Published In

        cover image Semantic Web
        Semantic Web  Volume 7, Issue 4
        Selected papers from the combined EKAW 2014 and Semantic Web journal track
        2016
        144 pages
        ISSN:1570-0844
        EISSN:2210-4968
        Issue’s Table of Contents

        Publisher

        IOS Press

        Netherlands

        Publication History

        Published: 01 January 2016

        Qualifiers

        • Research-article

        Contributors

        Other Metrics

        Bibliometrics & Citations

        Bibliometrics

        Article Metrics

        • 0
          Total Citations
        • 0
          Total Downloads
        • Downloads (Last 12 months)0
        • Downloads (Last 6 weeks)0
        Reflects downloads up to 10 Nov 2024

        Other Metrics

        Citations

        View Options

        View options

        Get Access

        Login options

        Media

        Figures

        Other

        Tables

        Share

        Share

        Share this Publication link

        Share on social media