Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
research-article

The Semantic Web: : Two decades on

Published: 01 January 2020 Publication History
  • Get Citation Alerts
  • Abstract

    More than two decades have passed since the establishment of the initial cornerstones of the Semantic Web. Since its inception, opinions have remained divided regarding the past, present and potential future impact of the Semantic Web. In this paper – and in light of the results of over two decades of development on both the Semantic Web and related technologies – we reflect on the current status of the Semantic Web, the impact it has had thus far, and future challenges. We first review some of the external criticism of this vision that has been put forward by various authors; we draw together the individual critiques, arguing both for and against each point based on the current state of adoption. We then present the results of a questionnaire that we have posed to the Semantic Web mailing list in order to understand respondents’ perspective(s) regarding the degree to which the original Semantic Web vision has been realised, the impact it can potentially have on the Web (and other settings), its success stories thus far, as well as the degree to which they agree with the aforementioned critiques of the Semantic Web in terms of both its current state and future feasibility. We conclude by reflecting on future challenges and opportunities in the area.

    References

    [1]
    D. Allemang and J.A. Hendler, Semantic Web for the Working Ontologist – Effective Modeling in RDFS and OWL, 2nd edn, Morgan Kaufmann, 2011, ISBN 978-0-12-385965-5.
    [2]
    Amazon Neptune: Fast, reliable graph database built for the cloud, 2019, https://aws.amazon.com/neptune/.
    [3]
    R. Angles, M. Arenas, P. Barceló, A. Hogan, J.L. Reutter and D. Vrgoc, Foundations of modern query languages for graph databases, ACM Comput. Surv. 50(5) (2017), 68:1–68:40.
    [4]
    R. Angles, H. Thakkar and D. Tomaszuk, RDF and Property Graphs Interoperability: Status and Issues, in: Alberto Mendelzon International Workshop (AMW), Vol. 2369, CEUR-WS.org, 2019.
    [5]
    C.B. Aranda, A. Hogan, J. Umbrich and P. Vandenbussche, SPARQL Web-querying infrastructure: Ready for action? in: International Semantic Web Conference, 2013, pp. 277–293.
    [6]
    M. Arenas, A. Bertails, E. Prud’hommeaux and J. Sequeda, A Direct Mapping of Relational Data to RDF, 2012, https://www.w3.org/TR/rdb-direct-mapping/.
    [7]
    M. Bergman, Scalability of the Semantic Web, 2006, http://www.mkbergman.com/227/scalability-of-the-semantic-web/.
    [8]
    T. Berners-Lee, The Future of RDF, 2010, https://www.w3.org/DesignIssues/RDF-Future.html.
    [9]
    T. Berners-Lee, J. Hendler and O. Lassila, The Semantic Web, Scientific American 284(5) (2001), 34–43.
    [10]
    C. Bizer and A. Schultz, The Berlin SPARQL benchmark, Int. J. Semantic Web Inf. Syst. 5(2) (2009), 1–24.
    [11]
    K.D. Bollacker, C. Evans, P. Paritosh, T. Sturge and J. Taylor, Freebase: A collaboratively created graph database for structuring human knowledge, in: ACM SIGMOD International Conference on Management of Data, 2008, pp. 1247–1250.
    [12]
    P.A. Bonatti, A. Hogan, A. Polleres and L. Sauro, Robust and scalable Linked Data reasoning incorporating provenance and trust annotations, J. Web Semant. 9(2) (2011), 165–201.
    [13]
    J.G. Breslin, A. Passant and D. Vrandecic, Social Semantic Web, in: Handbook of Semantic Web Technologies, Springer, 2011, pp. 467–506.
    [14]
    D. Brickley, R.V. Guha and A. Layman, Resource Description Framework (RDF) Schemas, 1998, https://www.w3.org/TR/1998/WD-rdf-schema-19980409/.
    [15]
    J. Cabeda, Semantic Web is Dead, Long live the AI!!! 2017, https://hackernoon.com/semantic-web-is-dead-long-live-the-ai-2a5ea0cf6423.
    [18]
    S. Corlosquet, R. Delbru, T. Clark, A. Polleres and S. Decker, Produce and consume Linked Data with Drupal!, in: International Semantic Web Conference, 2009, pp. 763–778.
    [19]
    R. Cyganiak, D. Reynolds and J. Tennison, The RDF Data Cube Vocabulary, 2014, https://www.w3.org/TR/vocab-data-cube/.
    [20]
    A. Dadzie and E. Pietriga, Visualisation of Linked Data, Reprise, Semantic Web 8(1) (2017), 1–21.
    [21]
    S. Das, J. Srinivasan, M. Perry, E.I. Chong and J. Banerjee, A tale of two graphs: Property graphs as RDF in oracle, in: International Conference on Extending Database Technology (EDBT), OpenProceedings.org, 2014, pp. 762–773.
    [22]
    S. Das, S. Sundara and R. Cyganiak, RDB to RDF Mapping Language (2012), R2RML, https://www.w3.org/TR/r2rml/.
    [23]
    C. Doctorow, Metacrap: Putting the torch to seven straw-men of the meta-utopia, 2001, https://people.well.com/user/doctorow/metacrap.htm.
    [24]
    J. Euzenat and P. Shvaiko, Ontology Matching, 2nd edn, Springer, 2013, ISBN 978-3-642-38720-3.
    [25]
    F. Gandon, A Survey of the First 20 Years of Research on Semantic Web and Linked Data, 2018, ff10.3166/ISI.23.3-4.11-56ff. ffhal-01935898.
    [26]
    J. Getman, J. Ellis, Z. Song, J. Tracey and S.M. Strassel, Overview of linguistic resources for the TAC KBP 2017 evaluations: Methodologies and results, in: Text Analysis Conference (TAC), NIST, 2017.
    [27]
    B. Glimm, A. Hogan, M. Krötzsch and A. Polleres, OWL: Yet to arrive on the Web of data?, in: Linked Data on the Web (LDOW), CEUR-WS.org, 2012.
    [28]
    C. Golbreich, M. Horridge, I. Horrocks, B. Motik and R. Shearer, OBO and OWL: Leveraging Semantic Web technologies for the life sciences, in: International Semantic Web Conference (ISWC), Springer, 2007, pp. 169–182.
    [29]
    T. Grubenmann, A. Bernstein, D. Moor and S. Seuken, Financing the Web of data with delayed-answer auctions, in: World Wide Web Conference (WWW), ACM, 2018, pp. 1033–1042.
    [30]
    R.V. Guha, D. Brickley and S. Macbeth, Schema.org: Evolution of structured data on the web, CACM 59(2) (2016), 44–51.
    [31]
    R.V. Guha, R. McCool and R. Fikes, Contexts for the Semantic Web, in: International Semantic Web Conference, Springer, 2004, pp. 32–46.
    [32]
    O. Hartig, Foundations of RDF⋆ and SPARQL⋆, in: Alberto Mendelzon International Workshop on Foundations of Data Management and the Web, CEUR-WS.org, 2017.
    [33]
    O. Hartig and J. Pérez, Semantics and complexity of GraphQL, in: World Wide Web Conference (WWW), ACM, 2018, pp. 1155–1164.
    [34]
    Q. He, B.-C. Chen and D. Agarwal, Building the LinkedIn Knowledge Graph, 2016, https://engineering.linkedin.com/blog/2016/10/building-the-linkedin-knowledge-graph.
    [35]
    T. Heath and C. Bizer, Linked Data: Evolving the Web into a Global Data Space, Synthesis Lectures on the Semantic Web, Morgan & Claypool Publishers, 2011.
    [36]
    J. Hendler, Why the semantic web will never work, in: Extended Sematic Web Conference (ESWC), Keynote, 2013, http://videolectures.net/eswc2011_hendler_work/.
    [37]
    D. Hernández, A. Hogan and M. Krötzsch, Reifying RDF: What works well with Wikidata? in: International Workshop on Scalable Semantic Web Knowledge Base Systems (SSWS), Vol. 1457, CEUR-WS.org, 2015, pp. 32–47.
    [38]
    D. Hernández, A. Hogan, C. Riveros, C. Rojas and E. Zerega, Querying Wikidata: Comparing SPARQL, relational and graph databases, in: International Semantic Web Conference, 2016, pp. 88–103.
    [39]
    A. Hogan, Canonical forms for isomorphic and equivalent RDF graphs: Algorithms for leaning and labelling blank nodes, TWEB 11(4) (2017), 22:1–22:62.
    [40]
    A. Hogan, Responses to “Semantic Web: Perspectives” Questionnaire, 2019.
    [41]
    A. Hogan, P. Hitzler and K. Janowicz, Linked Dataset description papers at the Semantic Web journal: A critical assessment, Semantic Web 7(2) (2016), 105–116.
    [42]
    A. Hogan, J. Umbrich, A. Harth, R. Cyganiak, A. Polleres and S. Decker, An empirical survey of Linked Data conformance, J. Web Semant. 14 (2012), 14–44.
    [43]
    I. Horrocks, Semantic Web: The story so far, in: International Cross-Disciplinary Conference on Web Accessibility (W4A), 2007, pp. 120–125.
    [44]
    Information technology – Database languages – SQL, 2016, SQL:2016; ISO/IEC 9075:2016.
    [45]
    S. Kanza and J.G. Frey, A new wave of innovation in Semantic Web tools for drug discovery, Expert Opinion on Drug Discovery 14(5) (2019), 433–444.
    [46]
    D.R. Karger, The Semantic Web and end users: What’s wrong and how to fix it, IEEE Int. Comp. 18(6) (2014), 64–70.
    [47]
    M. Karnstedt, K. Sattler and M. Hauswirth, Scalable distributed indexing and query processing over Linked Data, J. Web Semant. 10 (2012), 3–32.
    [48]
    G. Kobilarov, T. Scott, Y. Raimond, S. Oliver, C. Sizemore, M. Smethurst, C. Bizer and R. Lee, Media meets Semantic Web – how the BBC uses DBpedia and Linked Data to make connections, in: European Semantic Web Conference (ESWC), 2009, pp. 723–737.
    [49]
    A. Krishnan, Making search easier: How Amazon’s Product Graph is helping customers find products more easily, 2018, https://blog.aboutamazon.com/innovation/making-search-easier.
    [50]
    O. Lassila and R.R. Swick, Resource Description Framework (RDF) Model and Syntax Specification, 1998, https://www.w3.org/TR/1998/WD-rdf-syntax-19981008/.
    [51]
    D. Lee, N. de Keizer, F. Lau and R. Cornet, Literature review of SNOMED CT use, Journal of the American Medical Informatics Association 21(e1) (2013), e11–e19.
    [52]
    J. Lehmann, R. Isele, M. Jakob, A. Jentzsch, D. Kontokostas, P.N. Mendes, S. Hellmann, M. Morsey, P. van Kleef, S. Auer and C. Bizer, DBpedia – a large-scale, multilingual knowledge base extracted from Wikipedia, Semantic Web 6(2) (2015), 167–195.
    [53]
    F. Maier, Y. Ma and P. Hitzler, Paraconsistent OWL and related logics, Semantic Web 4(4) (2013), 395–427.
    [54]
    S. Malyshev, M. Krötzsch, L. González, J. Gonsior and A. Bielefeldt, Getting the most out of wikidata: Semantic technology usage in Wikipedia’s knowledge graph, in: International Semantic Web Conference, 2018, pp. 376–394.
    [55]
    E. Mansour, A.V. Sambra, S. Hawke, M. Zereba, S. Capadisli, A. Ghanem, A. Aboulnaga and T. Berners-Lee, A demonstration of the solid platform for social Web applications, in: International Conference on World Wide Web (WWW), 2016, pp. 223–226.
    [56]
    J.L. Martinez-Rodriguez, A. Hogan and I. Lopez-Arevalo, Information Extraction Meets the Semantic Web: A Survey, Semantic Web, 2020. To appear, http://www.semantic-web-journal.net/content/information-extraction-meets-semantic-web-survey-0.
    [57]
    P.N. Mendes, H. Mühleisen and C. Bizer, Sieve: Linked data quality assessment and fusion, in: PJoint EDBT/ICDT Workshops, 2012, pp. 116–123.
    [58]
    R. Meusel, C. Bizer and H. Paulheim, A web-scale study of the adoption and evolution of the schema.org vocabulary over time, in: International Conference on Web Intelligence, Mining and Semantics (WIMS), ACM, 2015, pp. 15:1–15:11.
    [59]
    R. Meusel, P. Petrovski and C. Bizer, The WebDataCommons microdata, RDFa and microformat dataset series, in: International Semantic Web Conference, 2014, pp. 277–292.
    [60]
    P. Mika, What happened to the Semantic Web?, in: ACM Conference on Hypertext and Social Media (HYPERTEXT), 2017, p. 3.
    [61]
    J.J. Miller, Graph Database Applications and Concepts with Neo4j, in: Southern Association for Information Systems Conference (SAIS), AIS ELibrary, 2013.
    [62]
    B. Motik, B.C. Grau, I. Horrocks, Z. Wu, A. Fokoue and C. Lutz, OWL 2 Web Ontology Language Profiles, 2nd edn, 2012, https://www.w3.org/TR/owl2-profiles/.
    [63]
    A.N. Ngomo and S. Auer, LIMES – a time-efficient approach for large-scale link discovery on the Web of data, in: International Joint Conference on Artificial Intelligence (IJCAI), 2011, pp. 2312–2317.
    [64]
    E. Oren, R. Delbru, M. Catasta, R. Cyganiak, H. Stenzhorn and G. Tummarello, Sindice.com: A document-oriented lookup index for open linked data, IJMSO 3(1) (2008), 37–52.
    [65]
    J. Pérez, M. Arenas and C. Gutiérrez, Semantics and complexity of SPARQL, ACM Trans. Database Syst. 34(3) (2009), 16:1–16:45.
    [66]
    P. Petrescu, Google Organic Click-Through Rates in 2014, 2014, https://moz.com/blog/google-organic-click-through-rates-in-2014.
    [67]
    R. Pittman, A. Srivastava, S. Hewavitharana, A. Kale and S. Mansour, Cracking the Code on Conversational Commerce, 2017, https://www.ebayinc.com/stories/news/cracking-the-code-on-conversational-commerce/.
    [68]
    A. Polleres, A. Hogan, R. Delbru and J. Umbrich, RDFS and OWL reasoning for Linked Data, in: Reasoning Web, Springer, 2013, pp. 91–149.
    [69]
    [70]
    M.A. Rodriguez, The Gremlin graph traversal machine and language, in: Symposium on Database Programming Languages (DBPL), ACM, 2015, pp. 1–10.
    [71]
    [72]
    M. Schmachtenberg, C. Bizer and H. Paulheim, Adoption of the linked data best practices in different topical domains, in: International Semantic Web Conference (ISWC), Springer, 2014, pp. 245–260.
    [73]
    M. Schmidt, O. Görlitz, P. Haase, G. Ladwig, A. Schwarte and T. Tran, FedBench: A benchmark suite for federated semantic data query processing, in: International Semantic Web Conference (ISWC), Springer, 2011, pp. 585–600.
    [74]
    N. Shadbolt, T. Berners-Lee and W. Hall, The Semantic Web revisited, IEEE Intelligent Systems 21(3) (2006), 96–101.
    [75]
    S. Shrivastava, Bring rich knowledge of people, places, things and local businesses to your apps, 2017, https://blogs.bing.com/search-quality-insights/2017-07/bring-rich-knowledge-of-people-places-things-and-local-businesses-to-your-apps.
    [76]
    A. Singhal, Introducing the Knowledge Graph: Things, not strings, 2012, https://www.blog.google/products/search/introducing-knowledge-graph-things-not/.
    [77]
    S. Speicher, J. Arwe and A. Malhotra, Linked Data Platform 1(0) (2015), https://www.w3.org/TR/ldp/.
    [78]
    M. Sporny, D. Longley, G. Kellogg, M. Lanthaler and N. Lindström, JSON-LD 1.0 – A JSON-based Serialization for Linked Data, 2014, https://www.w3.org/TR/json-ld/.
    [79]
    R. Taelman, M.V. Sande and R. Verborgh, GraphQL-LD: Linked Data querying with GraphQL, in: International Semantic Web Conference – Posters & Demos (ISWC P&D), CEUR-WS.org, 2018.
    [80]
    S. Target, Whatever Happened to the Semantic Web? 2018, https://twobithistory.org/2018/05/27/semantic-web.html.
    [81]
    D. ter Heide, Three reasons why the Semantic Web has failed, 2013, https://gigaom.com/2013/11/03/three-reasons-why-the-semantic-web-has-failed/.
    [82]
    The Open Graph Protocol, 2017, http://ogp.me/.
    [83]
    J. Urbani, S. Kotoulas, J. Maassen, F. van Harmelen and H.E. Bal, WebPIE: A web-scale parallel inference engine using MapReduce, J. Web Semant. 10 (2012), 59–75.
    [84]
    P. Vandenbussche, G. Atemezing, M. Poveda-Villalón and B. Vatant, Linked Open Vocabularies (LOV): A gateway to reusable semantic vocabularies on the Web, Semantic Web 8(3) (2017), 437–452.
    [85]
    J. Volz, C. Bizer, M. Gaedke and G. Kobilarov, Silk – a link discovery framework for the Web of data, in: Linked Data on the Web (LDOW), 2009.
    [86]
    D. Vrandecic and M. Krötzsch, Wikidata: A free collaborative knowledgebase, CACM 57(10) (2014), 78–85.
    [87]
    Z. Wu, G. Eadon, S. Das, E.I. Chong, V. Kolovski, M. Annamalai and J. Srinivasan, Implementing an inference engine for RDFS/OWL constructs and user-defined rules in oracle, in: International Conference on Data Engineering, 2008, pp. 1239–1248.
    [88]
    R.V. Yampolskiy, AI-Complete, AI-Hard, or AI-Easy – Classification of Problems in AI, in: Midwest Artificial Intelligence and Cognitive Science Conference (MAICS), CEUR Workshop Proceedings, 2012, pp. 94–101.
    [89]
    T. Yasseri, R. Sumi, A. Rung, A. Kornai and J. Kertész, Dynamics of conflicts in Wikipedia, PLOS ONE 7(6) (2012).
    [90]
    A. Zaveri, A. Rula, A. Maurino, R. Pietrobon, J. Lehmann and S. Auer, Quality assessment for Linked Data: A survey, Semantic Web 7(1) (2016), 63–93.

    Cited By

    View all
    • (2024)ForestQB: Enhancing Linked Data Exploration through Graphical and Conversational UIs IntegrationACM Journal on Computing and Sustainable Societies10.1145/3675759Online publication date: 29-Jun-2024
    • (2024)Publication of Satellite Earth Observations in the Linked Open Data Cloud: Experiment Through the TRACES ProjectWeb and Wireless Geographical Information Systems10.1007/978-3-031-60796-7_5(67-85)Online publication date: 18-Jun-2024
    • (2023)RDF Playground: An Online Tool for Learning about the Semantic WebCompanion Proceedings of the ACM Web Conference 202310.1145/3543873.3587325(111-114)Online publication date: 30-Apr-2023
    • Show More Cited By

    Recommendations

    Comments

    Information & Contributors

    Information

    Published In

    cover image Semantic Web
    Semantic Web  Volume 11, Issue 1
    2020
    192 pages
    ISSN:1570-0844
    EISSN:2210-4968
    Issue’s Table of Contents

    Publisher

    IOS Press

    Netherlands

    Publication History

    Published: 01 January 2020

    Author Tags

    1. Semantic Web
    2. ontologies
    3. Linked Data
    4. knowledge graphs

    Qualifiers

    • Research-article

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)0
    • Downloads (Last 6 weeks)0
    Reflects downloads up to 11 Aug 2024

    Other Metrics

    Citations

    Cited By

    View all
    • (2024)ForestQB: Enhancing Linked Data Exploration through Graphical and Conversational UIs IntegrationACM Journal on Computing and Sustainable Societies10.1145/3675759Online publication date: 29-Jun-2024
    • (2024)Publication of Satellite Earth Observations in the Linked Open Data Cloud: Experiment Through the TRACES ProjectWeb and Wireless Geographical Information Systems10.1007/978-3-031-60796-7_5(67-85)Online publication date: 18-Jun-2024
    • (2023)RDF Playground: An Online Tool for Learning about the Semantic WebCompanion Proceedings of the ACM Web Conference 202310.1145/3543873.3587325(111-114)Online publication date: 30-Apr-2023
    • (2023)Comparison of Knowledge Graph Representations for Consumer ScenariosThe Semantic Web – ISWC 202310.1007/978-3-031-47240-4_15(271-289)Online publication date: 6-Nov-2023
    • (2021)Shapir: Standardizing and Democratizing Access to Web APIsThe 34th Annual ACM Symposium on User Interface Software and Technology10.1145/3472749.3474822(1282-1304)Online publication date: 10-Oct-2021

    View Options

    View options

    Get Access

    Login options

    Media

    Figures

    Other

    Tables

    Share

    Share

    Share this Publication link

    Share on social media