Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
article

Research on Multi-Parameter Prediction of Rabbit Housing Environment Based on Transformer

Published: 27 February 2024 Publication History

Abstract

The rabbit breeding industry exhibits vast economic potential and growth opportunities. Nevertheless, the ineffective prediction of environmental conditions in rabbit houses often leads to the spread of infectious diseases, causing illness and death among rabbits. This paper presents a multi-parameter predictive model for environmental conditions such as temperature, humidity, illumination, CO2 concentration, NH3 concentration, and dust conditions in rabbit houses. The model adeptly distinguishes between day and night forecasts, thereby improving the adaptive adjustment of environmental data trends. Importantly, the model encapsulates multi-parameter environmental forecasting to heighten precision, given the high degree of interrelation among parameters. The model's performance is assessed through RMSE, MAE, and MAPE metrics, yielding values of 0.018, 0.031, and 6.31% respectively in predicting rabbit house environmental factors. Experimentally juxtaposed with Bert, Seq2seq, and conventional transformer models, the method demonstrates superior performance.

References

[1]
Agea, L., García, M., Blasco, A., & Argente, M.-J. (2019). Litter survival differences between divergently selected lines for environmental sensitivity in rabbits. Animals (Basel), 9(9), 603. 31450706.
[2]
Bolsters, A. (2023). Auctane acquires return rabbit business. Wireless News.
[3]
Bolton, S., Dill, R., Grimaila, M. R., & Hodson, D. (2023). ADS-B classification using multivariate long short-term memory–fully convolutional networks and data reduction techniques. The Journal of Supercomputing, 79(4), 1–39.
[4]
Boudhan, R., Joubert, A., Durecu, S., Gueraoui, K., & Le Coq, L. (2019). Influence of air humidity on particle filtration performance of a pulse-jet bag filter. Journal of Aerosol Science, 130, 1–9.
[5]
Cen, H. L., Yu, L. H., Pu, Y. H., Liu, Z.C., Cai,Q., Liu, S.Y., & Nie, J. (2023). A method to predict CO2 mass concentration in sheep barns based on the RF-PSO-LSTM model animals. Academic Press.
[6]
Chandra, N. D., Kumar, J. B., Bhola, P., & Kim, N. E. (2023). Emission of CO2 in a livestock barn based on diurnal activities and various growing stages of pigs. Air Quality, Atmosphere & Health, 16(7).
[7]
Chen, H., Fang, X. W., & Fang, H. (2022). Multi-task prediction method of business process based on BERT and Transfer Learning. Knowledge-Based Systems, 254, 254.
[8]
Cullere, M., & Dalle Zotte, A. (2018). Rabbit meat production and consumption: State of knowledge and future perspectives. Academic Press.
[9]
Dalle Zotte, A., & Szendrő, Z. (2011). The role of rabbit meat as functional food. Meat Science, 88(3), 319–331. 21392894.
[10]
Ge, X. R., Schaap, M., & Wim, V. D. (2023). Improving spatial and temporal variation of ammonia emissions for the Netherlands using livestock housing information and a Sentinel-2-derived crop map. Atmospheric Environment: X, 17, 100207.
[11]
Guo, T., Feng, H., Yan, P., Xiao, Y. J., Wang, Z. W., & Wang, R. L. (2023). Learning and integration of adaptive hybrid graph structures for multivariate time series forecasting. Information Sciences, 648, 1–14.
[12]
H, J., Wang, Q.J., Zhang, K.H., He, S.A., Liu, Z.Y., Li, M.Y., Liu, M., Guo, Y., & Wu, Z. (2023). Optimizing feeding strategies for growing rabbits: Impact of timing and amount on health and circadian rhythms. Animals: An Open Access Journal From MDPI, 13(1), 1—13.
[13]
Hernandez-Patlan, D., Tellez-Isaias, G., Hernandez-Velasco, X., & Solis-Cruz, B. (2023). Editorial: Technological strategies to improve animal health and production. Frontiers in Veterinary Science, 10(12), 1206170. 37292431.
[14]
Hinich, J. M. (2012). Time series analysis by state space methods. Technometrics, 47(3), 373–373.
[15]
Huang, Y. F., Sun, J., & Xu, L. (2023). A multi-variable multi-step Seq2seq networks for the state of charge estimation of lithium-ion battery. Case Studies in Thermal Engineering, 51, 51.
[16]
Ji, R. H., Shi, S. Y., Liu, Z. H., & Wu, Z. (2023). Decomposition-based multi-step forecasting model for the environmental variables of rabbit houses. Animals (Basel), 13(1), 1–9. 36766434.
[17]
Karunarathne, S. A., & Chung, M. (2020). Compartmental process-based model for estimating ammonia emissions from stored liquid dairy manure. SN Applied Sciences, 2(4), 709–742.
[18]
Li, K., Abdelsattar, M. A., Gu, M., Zhao, W., Liu, H. Y., Li, Y. F., Guo, P. T., Huang, C. Y., Fang, S. M., & Gan, Q. F. (2023). The effects of temperature and humidity index on growth performance, colon microbiota, and serum metabolome of ira rabbits. Animals (Basel), 13(12), 13. 37370481.
[19]
Mitkov, R., Petrova-Antonova, D., & Hristov, P. O. (2023). Predictive modeling of indoor environmental parameters for assessing comfort conditions in a kindergarten setting. Toxics, 11(8), 709. 37624214.
[20]
Nguyen, K., Mai, T. N., Nguyen, H. A., & Nguyen, H. (2023). A computational model for predicting customer behaviors using transformer adapted with tabular features. International Journal of Computational Intelligence Systems, 16(1), 1–17.
[21]
Pavan, K., Abubakar, A. A., Akhilesh, K. V., Pramila, U., Muideen, A. A., Nitin, M., Muhammad, N. H., Ubedullah, K. K., & Awis, Q. S. (2022). New insights in improving sustainability in meat production: Opportunities and challenges. Critical Reviews in Food Science and Nutrition, 36(33), 11830–11858. 35821661.
[22]
Rad, A. K., Shamshiri, R. R., Naghipour, A., Razmi, S. O., Shariati, M., Golkar, F., & Balasundram, S. K. (2022). Machine learning for determining interactions between air pollutants and environmental parameters in three cities of Iran. Sustainability (Basel), 14(3), 8027.
[23]
Rödel, H. G., Ibler, B., Ozogány, K., & Kerekes, V. (2023). Age-specific effects of density and weather on body condition and birth rates in a large herbivore. Oecologia, 203(3-4), 435–451. 37971561.
[24]
Rosmaliati, E. (2023). The remaining life of distribution transformer prediction by using neuro-wavelet method. Przegląd Elektrotechniczny, 99(2), 114–122.
[25]
Roy, M. A., & Bhaduri, J. B. (2023). DenseSPH-YOLOv5: An automated damage detection model based on DenseNet and Swin-Transformer prediction head-enabled YOLOv5 with attention mechanism. Advanced Engineering Informatics, 56(part 1), 448–467.
[26]
Sampath, A. K., Jactone, A. O., & Chung, M. (2020). Compartmental process-based model for estimating ammonia emissions from stored liquid dairy manure. SN Applied Sciences, 2(4), 686.
[27]
Seep, H., & Jur, S. (1997). Long short-term memory. Neural Computation, 9(7), 1735–1780. 9377276.
[28]
Shawna, W., Gregory, S. F., Sara, O., Karcher, D., Archer, G., Pierzchala, K. K., & Scanes, C. G. (2023). Editorial: Environmental impacts in domestic birds: towards homeostasis, efficiency and well-being. Frontiers in Physiology, 14, 32. 37727658.
[29]
Shin, H. J., Younghoon, K., Seng-Kyoun, J., Se-Han, K., & Jung-Ho, H. (2023). Development of an optimal mechanical ventilation system control strategy based on weather forecasting data for outdoor air cooling in livestock housing. Energy, 268, 268.
[30]
Takeshi, S., Hiroki, T., Hidemi, I., & Satoshi, N. (2022). Multimodal prediction of social responsiveness score with BERT-based text features. IEICE Transactions on Information and Systems, E105.D(3), 578—586.
[31]
Tong, G., Zhang, G., Christopher, M. D., Bjarne, B., Ye, Z. Y., & Cheng, J. (2013). Evaluation of turbulence models to predict airflow and ammonia concentrations in a scale model swine building enclosure. Computers & Fluids, 71, 1–11.
[32]
Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, Ł., & Polosukhin, I. (2017). Attention is all you need. Advances in Neural Information Processing Systems, 30, 5998–6008.
[33]
Wan, R., Mei, S., Wang, J., Liu, M., & Yang, F. (2019). Multivariate temporal convolution network: A deep neural networks approach for multivariate time series forecasting. Electronics (Basel), 8(8), 876.
[34]
Wang, L. F., Xu, B., Zhang, C., Fu, G., Chan, X., & Zhang, Y. (2022). Surface water temperature prediction in large-deep reservoirs using a long short-term memory model. Ecological Indicators, 134, 1–9.
[35]
Wang, X., Zou, S. F., Jiang, Y., Zhang, L., & Deng, X. (2023). Swin-FlowNet: Flow field oriented optimization aided by a CNN and Swin-Transformer based model. Journal of Computational Science, 72(C), 197–208.
[36]
Yang, H. N., Chen, L., Huan, H., Tang, P., Xie, H., & Wang, C. (2023). Exploring the impact mechanism of low-carbon multivariate coupling system in Chinese typical cities based on machine learning. Scientific Reports, 13(1), 4533. 36941319.
[37]
Yang, J., Zhao, Y., Zhang, F., Liao, M., & Yang, X. (2022). Deep learning architecture with transformer and semantic field alignment for voxel-level dose prediction on brain tumors. Medical Physics, 50(2), 1149–1161. 36434793.
[38]
Ye, Z., Li, S. H., Mi, X., Shao, B., Dai, Z., Ding, B., Feng, S., Sun, B., Shen, Y., & Xiao, Z. (2023). An accurate Star-Transformer-based extensible framework for predicting MHC I allele binding peptides. Briefings in Bioinformatics, 24(3), 164. 37122066.
[39]
Zhang, R., Zhang, C., Song, X., Li, Z., Su, Y., Li, G., & Zhu, Z. (2024). Real-time prediction of logging parameters during the drilling process using an attention-based Seq2Seq model. Geoenergy Science and Engineering, 233, 212279.
[40]
Zhang, X., Li, J., Shao, L., Huan, H., Qin, F., Zhai, P., Yang, J., & Pan, X. (2022). Effects of manure removal frequencies and deodorants on ammonia and GHG concentrations in livestock house. Atmosphere (Basel), 13(7), 1033.
[41]
Zhou, L., Lu, Z. G., You, W. K., & Fang, X. (2023). Reversible data hiding using a transformer predictor and an adaptive embedding strategy. Frontiers of Information Technology & Electronic Engineering, 24(1), 1–8.

Recommendations

Comments

Information & Contributors

Information

Published In

cover image International Journal of Data Warehousing and Mining
International Journal of Data Warehousing and Mining  Volume 20, Issue 1
May 2024
237 pages

Publisher

IGI Global

United States

Publication History

Published: 27 February 2024

Author Tags

  1. Attention Mechanism
  2. Multi-Parameter
  3. Prediction
  4. Rabbit House Environment
  5. Time Series

Qualifiers

  • Article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • 0
    Total Citations
  • 0
    Total Downloads
  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 10 Oct 2024

Other Metrics

Citations

View Options

View options

Get Access

Login options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media