Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
article

Knowledge Discovery and Data Visualization: Theories and Perspectives

Published: 01 July 2017 Publication History

Abstract

This article reviews the literature in the search for the theories and perspectives of knowledge discovery and data visualization. The literature review highlights the overview of knowledge discovery; Knowledge Discovery in Databases KDD; Knowledge Discovery in Textual Databases KDT; the overview of data visualization; the significant perspectives on data visualization; data visualization and big data; and data visualization and statistical literacy. Knowledge discovery is the process of searching for hidden knowledge in the massive amounts of data that individuals are technically capable of generating and storing. Data visualization is an easy way to convey concepts in a universal manner. Organizations, that utilize knowledge discovery and data visualization, are more likely to find both knowledge and information they need when they need them. The findings present valuable insights and further understanding of the way in which knowledge discovery and data visualization efforts should be focused.

References

[1]
Aigner, W., Rind, A., & Hoffmann, S. 2012. Comparative evaluation of an interactive time-series visualization that combines quantitative data with qualitative abstractions. Computer Graphics Forum, 313pt2, 995-1004.
[2]
Alatrista-Salas, H., Aze, J., Bringay, S., Cernesson, F., Selmaoui-Folcher, N., & Teisseire, M. 2014. A knowledge discovery process for spatiotemporal data: Application to river water quality monitoring. Ecological Informatics, 26, 127-139.
[3]
Anderson, B., & Hardin, J. M. 2014. Harnessing the power of big data analytics. In Wang, J. Ed., Encyclopedia of business analytics and optimization pp. 1107-1116. Hershey, PA: IGI Global.
[4]
Azzam, T., Evergreen, S., Germuth, A. A., & Kistler, S. J. 2013. Data visualization and evaluation. New Directions for Evaluation, 2013139, 7-32.
[5]
Bauer, J. R., & Rose, K. 2015. Variable grid method: An intuitive approach for simultaneously quantifying and visualizing spatial data and uncertainty. Transactions in GIS, 193, 377-397.
[6]
Berka, P. 2015. Knowledge discovery in databases and data mining. In Khosrow-Pour, M. Ed., Encyclopedia of information science and technology 3rd ed., pp. 1809-1818. Hershey, PA: IGI Global.
[7]
Biba, M., Vajjhala, N. R., & Nishani, L. 2017. Visual data mining for collaborative filtering: A state-of-the-art survey. In V. Bhatnagar Ed., Collaborative filtering using data mining and analysis pp. 217-235. Hershey, PA: IGI Global.
[8]
Carletta, J., Isard, A., Isard, S., Kowtko, J. C., Doherty-Sneddon, G., & Anderson, A. H. 1997. The reliability of a dialogue structure coding scheme. Computational Linguistics, 231, 13-31.
[9]
Carpineto, C., Osinski, S., Romano, G., & Weiss, D. 2009. A survey of web clustering engines. ACM Computing Surveys, 413, 17:1-17:38.
[10]
Cesario, E., Lackovic, M., Talia, D., & Trunfio, P. 2013. Programming knowledge discovery workflows in service-oriented distributed systems. Concurrency and Computation, 2510, 1482-1504.
[11]
Chang, V. 2014a. Cloud computing for brain segmentation - A perspective from the technology and evaluations. International Journal of Big Data Intelligence, 14, 192-204.
[12]
Chang, V. 2014b. The Business Intelligence as a Service in the cloud. Future Generation Computer Systems, 37, 512-534.
[13]
Chang, V. 2017. A cybernetics Social Cloud. Journal of Systems and Software, 124, 195-211.
[14]
Chang, V., Walters, R. J., & Wills, G. 2013. The development that leads to the Cloud Computing Business Framework. International Journal of Information Management, 333, 524-538.
[15]
Chen, C. H., Khoo, L. P., Chong, Y. T., & Yin, X. F. 2014. Knowledge discovery using genetic algorithm for maritime situational awareness. Expert Systems with Applications: An International Journal, 416, 2742-2753.
[16]
Chen, C. L. P., & Zhang, C. Y. 2014. Data-intensive applications, challenges, techniques and technologies: A survey on big data. Information Sciences, 27510, 314-347.
[17]
Chong, Y. T., Chen, C. H., & Leong, K. F. 2009. A heuristic-based approach to conceptual design. Research in Engineering Design, 202, 97-116.
[18]
Congiusta, A., Talia, D., & Trunfio, P. 2008. Using grids for distributed knowledge discovery. In Felici, G., & Vercellis, C. Eds., Mathematical methods for knowledge discovery and data mining pp. 284-298. Hershey, PA: IGI Global.
[19]
Dasgupta, A., Chen, M., & Kosara, R. 2012. Conceptualizing visual uncertainty in parallel coordinates. Computer Graphics Forum, 313pt2, 1015-1024.
[20]
Esfandiary, N., Babavalian, M. R., Moghadam, A. M. E., & Tabar, V. K. 2014. Knowledge discovery in medicine: Current issue and future trend. Expert Systems with Applications: An International Journal, 419, 4434-4463.
[21]
Fan, W., Wallace, L., Rich, S., & Zhang, Z. 2006. Tapping the power of text mining. Communications of the ACM - Privacy and Security in Highly Dynamic Systems, 499, 76-82.
[22]
Gal, I. 2002. Adults' statistical literacy: Meanings, components, responsibilities. International Statistical Review, 701, 1-51.
[23]
Gan, Q., Zhu, M., Li, M., Liang, T., Cao, Y., & Zhou, B. 2014. Document visualization: An overview of current research. Wiley Interdisciplinary Reviews: Computational Statistics, 61, 19-36.
[24]
Grottel, S., Heinrich, J., Weiskopf, D., & Gumhold, S. 2014. Visual analysis of trajectories in multi-dimensional state spaces. Computer Graphics Forum, 336, 310-321.
[25]
Gullo, F. 2015. From patterns in data to knowledge discovery: What data mining can do. Physics Procedia, 62, 18-22.
[26]
Gupta, V., & Lehal, G. S. 2009. A survey of text mining techniques and applications. Journal of Emerging Technologies in Web Intelligence, 11, 60-76.
[27]
Hai-Jew, S. 2015. Static text-based data visualizations: An overview and a sampler. In Hai-Jew, S. Ed., Design strategies and innovations in multimedia presentations pp. 203-302. Hershey, PA: IGI Global.
[28]
Hanna, A., Windebank, J., Adams, S., Sowerby, S., Rance, S., & Cartlidge, A. 2009. ITIL V3 foundation handbook: Pocketbook from the Official Publisher of ITIL. London, United Kingdom: TSO.
[29]
Jänicke, H., & Chen, M. 2010. A salience-based quality metric for visualization. Computer Graphics Forum, 293, 1183-1192.
[30]
Jänicke, H., Weidner, T., Chung, D., Laramee, R. S., Townsend, P., & Chen, M. 2011. Visual reconstructability as a quality metric for flow visualization. Computer Graphics Forum, 303, 781-790.
[31]
Kasemsap, K. 2015. The role of business analytics in performance management. In Tavana, M., & Puranam, K. Eds., Handbook of research on organizational transformations through big data analytics pp. 126-145. Hershey, PA: IGI Global.
[32]
Kasemsap, K. 2016a. The fundamentals of business intelligence. International Journal of Organizational and Collective Intelligence, 62, 12-25.
[33]
Kasemsap, K. 2016b. Multifaceted applications of data mining, business intelligence, and knowledge management. International Journal of Social and Organizational Dynamics in IT, 51, 57-69.
[34]
Kasemsap, K. 2016c. The fundamentals of neuroeconomics. In Christiansen, B., & Lechman, E. Eds., Neuroeconomics and the decision-making process pp. 1-32. Hershey, PA: IGI Global.
[35]
Kasemsap, K. 2016d. Mastering big data in the digital age. In M. Singh & D. G. Eds., Effective big data management and opportunities for implementation pp. 104-129. Hershey, PA: IGI Global.
[36]
Kasemsap, K. 2017a. Investigating the roles of neuroscience and knowledge management in higher education. In Mukerji, S., & Tripathi, P. Eds., Handbook of research on administration, policy, and leadership in higher education pp. 112-140. Hershey, PA: IGI Global.
[37]
Kasemsap, K. 2017b. Mastering business process management and business intelligence in global business. In Tavana, M., Szabat, K., & Puranam, K. Eds., Organizational productivity and performance measurements using predictive modeling and analytics pp. 192-212. Hershey, PA: IGI Global.
[38]
Kasemsap, K. 2017c. Internet of Things and security perspectives: Current issues and trends. In Jeyanthi, N., & Thandeeswaran, R. Eds., Security breaches and threat prevention in the Internet of Things pp. 19-45. Hershey, PA: IGI Global.
[39]
Kasemsap, K. 2017d. Text mining: Current trends and applications. In Sreedhar, G. Ed., Web data mining and the development of knowledge-based decision support systems pp. 338-358. Hershey, PA: IGI Global.
[40]
Kasemsap, K. 2017e. Software as a service, Semantic Web, and big data: Theories and applications. In Turuk, A., Sahoo, B., & Addya, S. Eds., Resource management and efficiency in cloud computing environments pp. 264-285. Hershey, PA: IGI Global.
[41]
Kasemsap, K. 2017f. Digital storytelling and digital literacy: Advanced issues and prospects. In Loveless, D., Sullivan, P., Dredger, K., & Burns, J. Eds., Deconstructing the education-industrial complex in the digital age pp. 151-171. Hershey, PA: IGI Global.
[42]
Kasemsap, K. 2017g. Promoting critical thinking in the modern learning environments. In Batko, R., & Szopa, A. Eds., Strategic imperatives and core competencies in the era of robotics and artificial intelligence pp. 50-80. Hershey, PA: IGI Global.
[43]
Kasemsap, K. 2017h. Advocating problem-based learning and creative problem-solving skills in global education. In Zhou, C. Ed., Handbook of research on creative problem-solving skill development in higher education pp. 351-377. Hershey, PA: IGI Global.
[44]
Kaya, E., Eren, M. T., Doger, C., & Balcisoy, S. S. 2016. Building a visual analytics tool for location-based services. In I. Management Association Ed., Geospatial research: Concepts, methodologies, tools, and applications pp. 620-642. Hershey, PA: IGI Global.
[45]
Khan, M., & Khan, S. S. 2011. Data and information visualization methods and interactive mechanisms: A survey. International Journal of Computers and Applications, 341, 1-14.
[46]
Khlebnikov, R., Kainz, B., Steinberger, M., Streit, M., & Schmalstieg, D. 2012. Procedural texture synthesis for zoom-independent visualization of multivariate data. Computer Graphics Forum, 313pt4, 1355-1364.
[47]
Lara, J., Lizcano, D., Martinez, M., & Pazos, J. 2014. Data preparation for KDD through automatic reasoning based on description logic. Information Systems, 44, 54-72.
[48]
Larson, D., & Chang, V. 2016. A review and future direction of agile, business intelligence, analytics and data science. International Journal of Information Management, 365, 700-710.
[49]
Lee, S. K., Kim, B., Huh, M., Park, J., Kang, S., Cho, S., & Lee, D. et al . 2014. Knowledge discovery in inspection reports of marine structures. Expert Systems with Applications: An International Journal, 414, 1153-1167.
[50]
Leng, J., Rhyne, T., & Sharrock, W. 2012. Visualization: Future technology and practices for computational science and engineering. In Leng, J., & Sharrock, W. Eds., Handbook of research on computational science and engineering: Theory and practice pp. 381-413. Hershey, PA: IGI Global.
[51]
Lodha, S., Gunawardane, P., Middleton, E., & Crow, B. 2009. Understanding relationships between global health indicators via visualisation and statistical analysis. Journal of International Development, 218, 1152-1166.
[52]
Mehenni, T. 2017. Geographic knowledge discovery in multiple spatial databases. In Faiz, S., & Mahmoudi, K. Eds., Handbook of research on geographic information systems applications and advancements pp. 344-366. Hershey, PA: IGI Global.
[53]
Mehlan, H., Schmidt, F., Weiss, S., Schüler, J., Fuchs, S., Riedel, K., & Bernhardt, J. 2013. Data visualization in environmental proteomics. Proteomics, 1318/19, 2805-2821. 23913834.
[54]
Mindek, P., Gröller, M. E., & Bruckner, S. 2014. Managing spatial selections with contextual snapshots. Computer Graphics Forum, 338, 132-144. 25821284.
[55]
Mishra, B. K., & Sahoo, A. K. 2016. Application of big data in economic policy. In Mallick, P. Ed., Research advances in the integration of big data and smart computing pp. 178-197. Hershey, PA: IGI Global.
[56]
Mwalongo, F., Krone, M., Reina, G., & Ertl, T. 2016. State-of-the-art report in web-based visualization. Computer Graphics Forum, 353, 553-575.
[57]
Nafari, M., & Weaver, C. 2013. Augmenting visualization with natural language translation of interaction: A usability study. Computer Graphics Forum, 323pt4, 391-400.
[58]
Nasukawa, T., & Nagano, T. 2001. Text analysis and knowledge mining system. IBM Systems Journal, 404, 967-984.
[59]
Newman, R., Chang, V., Walters, R. J., & Wills, G. B. 2016. Model and experimental development for Business Data Science. International Journal of Information Management, 364, 607-617.
[60]
Oelke, D., Janetzko, H., Simon, S., Neuhaus, K., & Keim, D. A. 2011. Visual boosting in pixel-based visualizations. Computer Graphics Forum, 303, 871-880.
[61]
Orriols-Puig, A., Martinez-Lopez, F. J., Casillas, J., & Lee, N. 2013. Unsupervised KDD to creatively support managers' decision making with fuzzy association rules: A distribution channel application. Industrial Marketing Management, 424, 532-543.
[62]
Osinska, V., Osinski, G., & Kwiatkowska, A. B. 2015. Visualization in learning: Perception, aesthetics, and pragmatism. In Ursyn, A. Ed., Handbook of research on maximizing cognitive learning through knowledge visualization pp. 381-414. Hershey, PA: IGI Global.
[63]
Palaniappan, R. 2014. Data visualization: Creating mind's eye. In Raj, P., & Deka, G. Eds., Handbook of research on cloud infrastructures for big data analytics pp. 322-351. Hershey, PA: IGI Global.
[64]
Pfaffelmoser, T., & Westermann, R. 2012. Visualization of global correlation structures in uncertain 2D scalar fields. Computer Graphics Forum, 313pt2, 1025-1034.
[65]
Ramachandran, M., & Chang, V. 2014. Financial Software as a Service: A paradigm for risk modelling and analytics. International Journal of Organizational and Collective Intelligence, 43, 65-89.
[66]
Ramachandran, M., & Chang, V. 2016. Towards performance evaluation of cloud service providers for cloud data security. International Journal of Information Management, 364, 618-625.
[67]
Riveiro, M. 2016. The importance of visualization and interaction in the anomaly detection process. In Business intelligence: Concepts, methodologies, tools, and applications pp. 880-897. Hershey, PA: IGI Global.
[68]
Rosenthal, P., Pfeiffer, L., Müller, N. H., & Ohler, P. 2013. VisRuption: Intuitive and efficient visualization of temporal airline disruption data. Computer Graphics Forum, 323pt1, 81-90.
[69]
Santos, M. Y., & Amaral, L. A. 2008. Mining geo-referenced databases: A way to improve decision-making. In Wang, J. Ed., Data warehousing and mining: Concepts, methodologies, tools, and applications pp. 880-912. Hershey, PA: IGI Global.
[70]
Sedding, J., & Kazakov, D. 2004. Wordnet-based text document clustering. Paper presented at the 3rd Workshop on RObust Methods in Analysis of Natural Language Data ROMAND '04, Stroudsburg, PA. 10.3115/1621445.1621458
[71]
Sharleen, F. 2010. Data visualisation: A new statistical literacy tool for statistical offices. Paper presented at the 7th Australian Conference on Teaching Statistics OZCOTS '10, Fremantle, Australia.
[72]
Ta, A. D., Tanque, M., & Washington, M. 2015. A specification framework for big data initiatives. In Girard, J., Klein, D., & Berg, K. Eds., Strategic data-based wisdom in the big data era pp. 257-274. Hershey, PA: IGI Global.
[73]
Tecuci, G., & Kodratoff, Y. 1995. Machine learning and knowledge acquisition: Integrated approaches. London, United Kingdom: Academic Press.
[74]
Uher, V., & Burget, R. 2012. Automatic 3D segmentation of human brain images using data-mining techniques. Paper presented at the 2012 35th IEEE International Conference on Telecommunications and Signal Processing TSP '12, Prague, Czech Republic. 10.1109/TSP.2012.6256362
[75]
Ur-Rahman, N., & Harding, J. 2012. Textual data mining for industrial knowledge management and text classification: A business oriented approach. Expert Systems with Applications: An International Journal, 395, 4729-4739.
[76]
Ursyn, A. 2015. Visualization as communication with graphic representation. In Khosrow-Pour, M. Ed., Encyclopedia of information science and technology 3rd ed., pp. 2131-2139. Hershey, PA: IGI Global.
[77]
Velu, M. C., & Kashwan, R. 2012. Performance analysis for visual data mining classification techniques of decision tree, ensemble and SOM. International Journal of Computers and Applications, 5722, 65-71.
[78]
von Landesberger, T., Kuijper, A., Schreck, T., Kohlhammer, J., van Wijk, J. J., Fekete, J. D., & Fellner, D. W. 2011. Visual analysis of large graphs: State-of-the-art and future research challenges. Computer Graphics Forum, 306, 1719-1749.
[79]
Walny, J., Huron, S., & Carpendale, S. 2015. An exploratory study of data sketching for visual representation. Computer Graphics Forum, 343, 231-240.
[80]
Wanderley, G. M. P., Tacla, C. A., Barthès, J. P. A., & Paraiso, E. C. 2015. Knowledge discovery in task-oriented dialogue. Expert Systems with Applications: An International Journal, 4220, 6807-6818.
[81]
Wang, L., Wang, G., & Alexander, C. A. 2015. Big data and visualization: Methods, challenges and technology progress. Digital Technologies, 11, 33-38.
[82]
Wills, G. 2012. Visualization toolkit software. Wiley Interdisciplinary Reviews: Computational Statistics, 45, 474-481.
[83]
Wolter, M., Assenmacher, I., Hentschel, B., Schirski, M., & Kuhlen, T. 2009. A time model for time-varying visualization. Computer Graphics Forum, 286, 1561-1571.
[84]
Womack, R. 2014. Data visualization and information literacy. IASSIST Quarterly, 381, 12-17.
[85]
Wu, F., Chen, G., Huang, J., Tao, Y., & Chen, W. 2015. EasyXplorer: A flexible visual exploration approach for multivariate spatial data. Computer Graphics Forum, 347, 163-172.
[86]
Wu, Q., McGinnity, M., Prasad, G., & Bell, D. 2009. Knowledge discovery in databases with diversity of data types. In Wang, J. Ed., Encyclopedia of data warehousing and mining 2nd ed., pp. 1117-1123. Hershey, PA: IGI Global.
[87]
Wu, X., Yu, P., Piatetsky-Shapiro, G., Cercone, N., Lin, T., Kotagiri, R., & Wah, B. 2003. Data mining: How research meets practical development? Knowledge and Information Systems, 52, 248-261.
[88]
Yada, K. 2004. Knowledge discovery process and introduction of domain knowledge. In Montano, B. Ed., Innovations of knowledge management pp. 86-98. Hershey, PA: IGI Global.
[89]
Yao, Y., & Chang, V. 2015. Cloud gaming virtual community - A case study in China. International Journal of Organizational and Collective Intelligence, 52, 1-19.
[90]
Zhu, Z., Hoon, H. B., & Teow, K. 2015. Interactive data visualization techniques applied to healthcare decision making. In Wang, B., Li, R., & Perrizo, W. Eds., Big data analytics in bioinformatics and healthcare pp. 46-59. Hershey, PA: IGI Global.

Cited By

View all
  • (2022)Exploration on the Optimal Application of Mobile Cloud Computing in Enterprise Financial Management under 5G Network ArchitectureAdvances in Multimedia10.1155/2022/75000142022Online publication date: 1-Jan-2022
  • (2022)Management of Power Marketing Audit Work Based on Tobit Model and Big Data TechnologyMobile Information Systems10.1155/2022/13753312022Online publication date: 1-Jan-2022

Recommendations

Comments

Information & Contributors

Information

Published In

cover image International Journal of Organizational and Collective Intelligence
International Journal of Organizational and Collective Intelligence  Volume 7, Issue 3
July 2017
69 pages
ISSN:1947-9344
EISSN:1947-9352
Issue’s Table of Contents

Publisher

IGI Global

United States

Publication History

Published: 01 July 2017

Author Tags

  1. Big Data
  2. Data
  3. Data Mining
  4. Document
  5. Knowledge
  6. Search Engine
  7. Text Mining
  8. Visualization

Qualifiers

  • Article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 10 Feb 2025

Other Metrics

Citations

Cited By

View all
  • (2022)Exploration on the Optimal Application of Mobile Cloud Computing in Enterprise Financial Management under 5G Network ArchitectureAdvances in Multimedia10.1155/2022/75000142022Online publication date: 1-Jan-2022
  • (2022)Management of Power Marketing Audit Work Based on Tobit Model and Big Data TechnologyMobile Information Systems10.1155/2022/13753312022Online publication date: 1-Jan-2022

View Options

View options

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media