Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
article

Machine Learning for Depression Detection on Web and Social Media: : A Systematic Review

Published: 15 May 2024 Publication History

Abstract

Depression, a significant psychiatric disorder, affects individuals' physical well-being and daily functioning. This focused analysis provides a comprehensive exploration of contemporary research conducted between 2012 and 2023 that delves into the utilization of sophisticated machine learning methodologies aimed at identifying correlates of depression within social media content. Our study meticulously dissects various data sources and performs a comprehensive examination of different machine learning algorithms cited in the researched articles and literature, aiming to pinpoint an approach that can enhance detection accuracy. Furthermore, we have scrutinized the use of varied data from social media platforms and pinpointed emerging trends, notably spotlighting novel applications of artificial neural networks for image processing and classification, along with advanced gait image models. Our results offer essential direction for future research focused on enhancing detection precision, acting as a valuable reference for academic and industry scholars in this field.

References

[1]
AjmaniL.ChancellorS.MehtaB.FieslerC.ZimmerM.de ChoudhuryM. (2023). A systematic review of ethics disclosures in predictive mental health research. In Proceedings of the 2023 ACM Conference on Fairness, Accountability, and Transparency. 10.1145/3593013.3594082
[2]
Ali, M., Baqir, A., Husnain Raza Sherazi, H., Hussain, A., Hassan Alshehri, A., & Ali Imran, M. (2022). Machine learning based psychotic behaviors prediction from Facebook status updates. Computers, Materials & Continua, 72(2), 2411–2427.
[3]
Almars, A. M. (2022). Attention-based Bi-LSTM model for Arabic depression classification. Computers, Materials & Continua, 71(2), 3091–3106.
[4]
Alsagri, H. S., & Ykhlef, M. (2020). Machine learning-based approach for depression detection in Twitter using content and activity features. IEICE Transactions on Information and Systems, E103.D(8), 1825–1832. 10.1587/transinf.2020EDP7023
[5]
Andersson, S., Bathula, D. R., Iliadis, S. I., Walter, M., & Skalkidou, A. (2021). Predicting women with depressive symptoms postpartum with machine learning methods. Scientific Reports, 11(1), 7877. Advance online publication. 33846362.
[6]
Angskun, J., Tipprasert, S., & Angskun, T. (2022). Big data analytics on social networks for real-time depression detection. Journal of Big Data, 9(1), 69. 35610999.
[7]
Anshul, A., Pranav, G. S., Rehman, M. Z., & Kumar, N. (2023). A multimodal framework for depression detection during COVID-19 via harvesting social media. IEEE Transactions on Computational Social Systems, 1–17.
[8]
Babu, N. V., & Kanaga, E. G. (2021). Sentiment analysis in social media data for depression detection using artificial intelligence: A review. SN Computer Science, 3(1), 74. Advance online publication. 34816124.
[9]
Bokolo, B. G., & Liu, Q. (2023). Deep learning-based depression detection from social media: Comparative evaluation of ML and transformer techniques. Electronics (Basel), 12(21), 4396.
[10]
Burdisso, S. G., Errecalde, M., & Montes-y-Gómez, M. (2019). A text classification framework for simple and effective early depression detection over social media streams. Expert Systems with Applications, 133, 182–197.
[11]
ChenY.ZhouB.ZhangW.GongW.SunG. (2018). Sentiment analysis based on deep learning and its application in screening for perinatal depression. In Proceedings of the IEEE Third International Conference on Data Science in Cyberspace (DSC) (pp. 451—456). 10.1109/DSC.2018.00073
[12]
Chiong, R., Budhi, G. S., Dhakal, S., & Chiong, F. (2021). A textual-based featuring approach for depression detection using machine learning classifiers and social media texts. Computers in Biology and Medicine, 135, 104499. 34174760.
[13]
Dhelim, S., Chen, L. L., Das, S. K., Ning, H., Nugent, C. D., Leavey, G., Pesch, D., Bantry-White, E., & Burns, D. M. (2023). Detecting mental distresses using social behavior analysis in the context of COVID-19: A survey. ACM Computing Surveys, 55(14s), 1–30.
[14]
Fang, M., Peng, S., Liang, Y., Hung, C., & Liu, S. (2023). A multimodal fusion model with multi-level attention mechanism for depression detection. Biomedical Signal Processing and Control, 82, 104561.
[15]
Gan, L. et al. (2024). Experimental comparison of three topic modeling methods with LDA, Top2Vec and BERTopic. In Lu, H., & Cai, J. (Eds.), Artificial intelligence and robotics. ISAIR 2023. Communications in computer and information science (Vol. 1998, pp. 376–391). Springer.
[16]
Gausman, J., & Langer, A. (2020). Sex and gender disparities in the COVID-19 pandemic. Journal of Women’s Health, 29(4), 465–466. 32320331.
[17]
Ghosh, S., Ekbal, A., & Bhattacharyya, P. (2022). What does your bio say? Inferring Twitter users’ depression status from multimodal profile information using deep learning. IEEE Transactions on Computational Social Systems, 9(5), 1484–1494.
[18]
Ghosh, T., Banna, M., Nahian, M. J. A., Uddin, M. N., Kaiser, M. S., & Mahmud, M. (2023). An attention-based hybrid architecture with explainability for depressive social media text detection in Bangla. Expert Systems with Applications, 213, 119007.
[19]
Guo, Z., Ding, N., Zhai, M., Zhang, Z., & Li, Z. (2023). Leveraging domain knowledge to improve depression detection on Chinese social media. IEEE Transactions on Computational Social Systems, 10(4), 1528–1536.
[20]
Hemanthkumar, M., & Latha, A. (2019). Depression detection with sentiment analysis of tweets. International Research Journal of Engineering and Technology, 6, 3–7.
[21]
Hussain, J., Satti, F. A., Afzal, M., Khan, W. A., Bilal, H. S., Ansaar, M. Z., Ahmad, H. F., Hur, T. H., Bang, J. H., Kim, J., Park, G. H., Seung, H., & Lee, S. (2019). Exploring the dominant features of social media for depression detection. Journal of Information Science, 46(6), 739–759.
[22]
Jones, N. P., Siegle, G. J., & Mandell, D. L. (2015). Motivational and emotional influences on cognitive control in depression: A pupillometry study. Cognitive, Affective & Behavioral Neuroscience, 15(2), 263–275. 25280561.
[23]
Kabir, M., Ahmed, T., Hasan, M. B., Laskar, M. T. R., Joarder, T. K., Mahmud, H., & Hasan, K. M. A. (2023). DEPTWEET: A typology for social media texts to detect depression severities. Computers in Human Behavior, 139, 107503.
[24]
LiawA. S.ChuaH. N. (2022). Depression detection on social media with user network and engagement features using machine learning methods. In Proceedings of the IEEE International Conference on Artificial Intelligence in Engineering and Technology (IICAIET) (pp. 1—6). 10.1109/IICAIET55139.2022.9936814
[25]
Ling, Z., & Hao, Z. J. (2022). An intrusion detection system based on normalized mutual information antibodies feature selection and adaptive quantum artificial immune system. International Journal on Semantic Web and Information Systems, 18(1), 1–25.
[26]
Ling, Z., & Hao, Z. J. (2022). Intrusion detection using normalized mutual information feature selection and parallel quantum genetic algorithm. International Journal on Semantic Web and Information Systems, 18(1), 1–24.
[27]
Liu, D., Ahmed, F., Shahid, M., Guo, J., & Feng, X. L. (2022). Detecting and measuring depression on social media using a machine learning approach: Systematic review. JMIR Mental Health, 9(3), e27244. 35230252.
[28]
Ma, W., Qiu, S., Miao, J., Li, M., Tian, Z., Zhang, B., & Dong, W. (2023). Detecting depression tendency based on deep learning and multi-sources data. Biomedical Signal Processing and Control, 86, 105226.
[29]
Malhotra, A., & Jindal, R. (2022). Deep learning techniques for suicide and depression detection from online social media: A scoping review. Applied Soft Computing, 130, 109713.
[30]
Meng, Y., Speier, W., Ong, M. K., & Arnold, C. W. (2021). Bidirectional representation learning from transformers using multimodal electronic health record data to predict depression. IEEE Journal of Biomedical and Health Informatics, 25(8), 3121–3129. 33661740.
[31]
Mishra, A., Joshi, B. K., Arya, V., Gupta, A. K., & Chui, K. T. (2022). Detection of distributed denial of service (DDoS) attacks using computational intelligence and majority vote-based ensemble approach. International Journal of Software Science and Computational Intelligence, 14(1), 1–10.
[32]
Motrico, E., Bina, R., Domínguez-Salas, S., Mateus, V., Contreras-García, Y., Carrasco-Portiño, M., Ajaz, E., Apter, G., Christoforou, A., Dikmen-Yildiz, P., Felice, E., Hancheva, C., Vousoura, E., Wilson, C. A., Buhagiar, R., Cadarso-Suárez, C., Costa, R., Devouche, E., Ganho-Ávila, A., & Mesquita, A. et al. (2021). Impact of the COVID-19 pandemic on perinatal mental health (Riseup-PPD-COVID-19): Protocol for an international prospective cohort study. BMC Public Health, 21(1), 368. Advance online publication. 33596889.
[33]
Müller, S. R., Chen, X., Peters, H., Chaintreau, A., & Matz, S. C. (2021). Depression predictions from GPS-based mobility do not generalize well to large demographically heterogeneous samples. Scientific Reports, 11(1), 11. 34234186.
[34]
Neuman, Y., Cohen, Y., Assaf, D., & Kedma, G. (2012). Proactive screening for depression through metaphorical and automatic text analysis. Artificial Intelligence in Medicine, 56(1), 19–25. 22771201.
[35]
Owusu, P. N., Reininghaus, U., Koppe, G., Dankwa-Mullan, I., & Bärnighausen, T. (2021). Artificial intelligence applications in social media for depression screening: A systematic review protocol for content validity processes. PLoS One, 16(11), e0259499. 34748571.
[36]
Pathoee, K., Rawat, D., Mishra, A., Arya, V., Rafsanjani, M. K., & Gupta, A. K. (2022). A cloud-based predictive model for the detection of breast cancer. International Journal of Cloud Applications and Computing, 12(1), 1–12.
[37]
Qian, Y., & Yan, X. (2013). Prevalence of postpartum depression in China: A systematic analysis. Chinese Journal of Practical Nursing, 1—3.
[38]
Robertson, C., Carney, J., & Trudell, S. (2023). Language about the future on social media as a novel marker of anxiety and depression: A big-data and experimental analysis. Current Research in Behavioral Sciences, 4, 100104. 37397228.
[39]
Santomauro Mantilla Herrera Shadid Zheng Ashbaugh, D. F., Santomauro, D. F., Mantilla Herrera, A. M., Shadid, J., Zheng, P., Ashbaugh, C., Pigott, D. M., Abbafati, C., Adolph, C., Amlag, J. O., Aravkin, A. Y., Bang-Jensen, B. L., Bertolacci, G. J., Bloom, S. S., Castellano, R., Castro, E. F., Chakrabarti, S., Chattopadhyay, J., Cogen, R. M., & Ferrari, A. J. et al. (2021). Global prevalence and burden of depressive and anxiety disorders in 204 countries and territories in 2020 due to the COVID-19 pandemic. Lancet, 398(10312), 1700–1712. 34634250.
[40]
Schindler, M., & Domahidi, E. (2023). The computational turn in online mental health research: A systematic review. New Media & Society, 25(10), 2781–2799.
[41]
Shin, D., Cho, W., Park, C. H., Rhee, S. J., Kim, M. J., Lee, H., Kim, N. S., & Ahn, Y. M. (2021). Detection of minor and major depression through voice as a biomarker using machine learning. Journal of Clinical Medicine, 10(14), 3046. 34300212.
[42]
Tadesse, M. M., Lin, H., Xu, B., & Yang, L. (2019). Detection of depression-related posts in Reddit social media forum. IEEE Access : Practical Innovations, Open Solutions, 7, 44883–44893.
[43]
Tembhurne, J. V., Almin, M. M., & Diwan, T. (2022). Mc-DNN: Fake news detection using multi-channel deep neural networks. [IJSWIS]. International Journal on Semantic Web and Information Systems, 18(1), 1–20.
[44]
Tong, L., Liu, Z., Jiang, Z., Zhou, F., Chen, L., Lyu, J., & Zhou, H. (2023). Cost-sensitive boosting pruning trees for depression detection on Twitter. IEEE Transactions on Affective Computing, 14(3), 1898–1911.
[45]
Wani, M. A., ElAffendi, M. A., Shakil, K. A., Imran, A. S., & Abd El-Latif, A. A. (2023). Depression screening in humans with AI and deep learning techniques. IEEE Transactions on Computational Social Systems, 10(4), 2074–2089.
[46]
Wu, J. L., & Tang, C. Y. (2022). Classifying the severity of cyberbullying incidents by using a hierarchical squashing-attention network. Applied Sciences (Basel, Switzerland), 12(7), 3502.
[47]
YazdavarA. H.Al-OlimatH. S.EbrahimiM.BajajG.BanerjeeT.ThirunarayanK.PathakJ.ShethA. (2017). Semi-supervised approach to monitoring clinical depressive symptoms in social media. In Proceedings of the 2017 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining. 10.1145/3110025.3123028
[48]
Zeberga, K., Attique, M., Shah, B., Ali, F., Jembre, Y. Z., & Chung, T. S. (2022). A novel text mining approach for mental health prediction using Bi-LSTM and BERT Model. Computational Intelligence and Neuroscience, 2022, 1–18. 35281185.
[49]
Zhang, H., Wang, H., Han, S., Li, W., & Zhuang, L. (2023). Detecting depression tendency with multimodal features. Computer Methods and Programs in Biomedicine, 240, 107702. 37531689.
[50]
Zhang, Q., Guo, Z., Zhu, Y., Vijayakumar, P., Castiglione, A., & Gupta, B. B. (2023). A deep learning-based fast fake news detection model for cyber-physical social services. Pattern Recognition Letters, 168, 31–38.
[51]
Zhang, T., Schoene, A. M., Ji, S., & Ananiadou, S. (2022). Natural language processing applied to mental illness detection: A narrative review. NPJ Digital Medicine, 5(1), 46. Advance online publication. 35396451.
[52]
Zhang, T., Yang, K., Ji, S., & Ananiadou, S. (2023). Emotion fusion for mental illness detection from social media: A survey. Information Fusion, 92, 231–246.
[53]
Zhuo, C., Li, G., Lin, X., Jiang, D., Xu, Y., Tian, H., Wang, W., & Song, X. (2019). The rise and fall of MRI studies in major depressive disorder. Translational Psychiatry, 9(1), 9. 31819044.
[54]
Zogan, H., Razzak, I., Wang, X., Jameel, S., & Xu, G. (2022). Explainable depression detection with multi-aspect features using a hybrid deep learning model on social media. World Wide Web (Bussum), 25(1), 281–304. 35106059.
[55]
Zou, M. L., Li, M. X., & Cho, V. (2020). Depression and disclosure behavior via social media: A study of university students in China. Heliyon, 6(2), e03368. Advance online publication. 32099917.

Recommendations

Comments

Information & Contributors

Information

Published In

cover image International Journal on Semantic Web & Information Systems
International Journal on Semantic Web & Information Systems  Volume 20, Issue 1
Nov 2024
1598 pages

Publisher

IGI Global

United States

Publication History

Published: 15 May 2024

Author Tags

  1. Depression Detection
  2. Machine Learning
  3. Multimodal
  4. Sentiment Analysis
  5. Social Media
  6. Text Mining

Qualifiers

  • Article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • 0
    Total Citations
  • 0
    Total Downloads
  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 03 Jan 2025

Other Metrics

Citations

View Options

View options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media