Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
article

Improved upper bounds on the star discrepancy of (t,m,s)-nets and (t,s)-sequences

Published: 01 June 2006 Publication History

Abstract

The concepts of (t,m,s)-nets and (t,s)-sequences are among the best known classes of point sets in the theory of quasi-Monte Carlo methods. In this paper, we give new general upper bounds for the star discrepancy of (t,m,s)-nets and (t,s)-sequences. By these findings, we improve existing upper bounds on the discrepancy of such point sets and extend results that have been obtained for low-dimensional nets and sequences during the past years.

References

[1]
De Clerck, L., A method for exact calculation of the star discrepancy of plane sets applied to the sequences of Hammersley. Monatsh. Math. v101. 261-278.
[2]
J. Dick, P. Kritzer, Star -discrepancy estimates for digital (t,m,2)-nets and digital (t,2)-sequences over Z2, Acta Math. Hungar. 109(3) (2005), 239--254.
[3]
J. Dick, P. Kritzer, A best possible upper bound on the star discrepancy of (t,m,2)-nets, Monte Carlo Meth. Appl. (2006), to appear
[4]
M. Drmota, G. Larcher, F. Pillichshammer, Precise distribution properties of the van der Corput sequence and related sequences, Manuscripta Math.118 (2005), 11--41.
[5]
Faure, H., Discrépances de suites associées a un système de numération (en dimension un). Bull. Soc. Math. France. v109. 143-182.
[6]
Faure, H., On the star-discrepancy of generalized Hammersley sequences in two dimensions. Monatsh. Math. v101. 291-300.
[7]
Faure, H., Discrepancy and diaphony of digital (0,1)-sequences in prime base. Acta Arith. v117. 125-148.
[8]
P. Kritzer, On the star discrepancy of digital nets and sequences in three dimensions, in: H. Niederreiter, D. Talay (Eds.), Monte Carlo and Quasi-Monte Carlo Methods 2004, Springer, Berlin, 2005, pp. 273--288.
[9]
P. Kritzer, On some remarkable properties of the two-dimensional Hammersley net in base 2, J. Théor. Nombres Bordeaux (2006), to appear.
[10]
P. Kritzer, G. Larcher, F. Pillichshammer, A thorough analysis of the discrepancy of shifted Hammersley and van der Corput point sets, Ann. Mat. Pura Appl. (2006), to appear.
[11]
Larcher, G. and Pillichshammer, F., Sums of distances to the nearest integer and the discrepancy of digital nets. Acta Arith. v106. 379-408.
[12]
Niederreiter, H., Point sets and sequences with small discrepancy. Monatsh. Math. v104. 273-337.
[13]
Niederreiter, H., Random Number Generation and Quasi-Monte Carlo Methods, CBMS-NSF Series in Applied Mathematics, vol. 63. 1992. SIAM, Philadelphia.
[14]
Niederreiter, H., Constructions of (t,m,s)-nets and (t,s)-sequences. Finite Fields Appl. v11. 578-600.
[15]
Niederreiter, H. and Xing, C.P., Rational Points on Curves over Finite Fields: Theory and Applications, London Mathematical Society Lecture Notes Series, vol. 285. 2001. Cambridge University Press, Cambridge, UK.
[16]
Pillichshammer, F., Improved upper bounds for the star discrepancy of digital nets in dimension 3. Acta Arith. v108. 167-189.
[17]
Pillichshammer, F., On the discrepancy of (0,1)-sequences. J. Number Theory. v104. 301-314.
[18]
Rosen, K.H., Handbook of Discrete and Combinatorial Mathematics. 2000. CRC Press, Boca Raton.
[19]
R. Schürer, W.Ch. Schmid, MinT: A database for optimal net parameters, in: H. Niederreiter, D. Talay (Eds.), Monte Carlo and Quasi-Monte Carlo Methods 2004, Springer, Berlin, 2005, pp. 457--470.

Cited By

View all

Recommendations

Comments

Information & Contributors

Information

Published In

cover image Journal of Complexity
Journal of Complexity  Volume 22, Issue 3
June 2006
148 pages

Publisher

Academic Press, Inc.

United States

Publication History

Published: 01 June 2006

Author Tags

  1. (t
  2. 11K06
  3. 11K38
  4. Star discrepancy
  5. m
  6. s)-net
  7. s)-sequence

Qualifiers

  • Article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 10 Nov 2024

Other Metrics

Citations

Cited By

View all

View Options

View options

Get Access

Login options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media