Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.5555/1516744.1516760acmconferencesArticle/Chapter ViewAbstractPublication PageswscConference Proceedingsconference-collections
research-article

Introduction to modeling and generating probabilistic input processes for simulation

Published: 07 December 2008 Publication History

Abstract

Techniques are presented for modeling and generating the univariate probabilistic input processes that drive many simulation experiments. Emphasis is on the generalized beta distribution family, the Johnson translation system of distributions, and the Bézier distribution family. Also discussed are nonparametric techniques for modeling and simulating time-dependent arrival streams using nonhomogeneous Poisson processes. Public-domain software implementations and current applications are presented for each input-modeling technique. Many of the references include live hyperlinks providing online access to the referenced material.

References

[1]
AbouRizk, S. M., D. W. Halpin, and J. R. Wilson. 1991. Visual interactive fitting of beta distributions. Journal of Construction Engineering and Management 117 (4): 589--605. Available online via <www.ise.ncsu.edu/jwilson/files/abourizk91jcem.pdf> {accessed May 31, 2008}.
[2]
AbouRizk, S. M., D. W. Halpin, and J. R. Wilson. 1994. Fitting beta distributions based on sample data. Journal of Construction Engineering and Management 120 (2): 288--305. Available online via <www.ise.ncsu.edu/jwilson/files/abourizk94jcem.pdf> {accessed May 31, 2008}.
[3]
Alexopoulos, C., D. Goldsman, J. Fontanesi, D. Kopald, and J. R. Wilson. 2008. Modeling patient arrival times in community clinics. Omega 36:33--43. Available online via <www.ise.ncsu.edu/jwilson/files/alex08omega.pdf> {accessed May 31, 2008}.
[4]
Chick, S. E. 2001. Input distribution selection for simulation experiments: Accounting for input uncertainty. Operations Research 49 (5): 744--758.
[5]
DeBrota, D. J., R. S. Dittus, S. D. Roberts, J. R. Wilson, J. J. Swain, and S. Venkatraman. 1989a. Modeling input processes with Johnson distributions. In Proceedings of the 1989 Winter Simulation Conference, ed. E. A. MacNair, K. J. Musselman, and P. Heidelberger, 308--318. Piscataway, New Jersey: Institute of Electrical and Electronics Engineers. Available online via <www.ise.ncsu.edu/jwilson/files/wsc89jnsn.pdf> {accessed May 31, 2008}.
[6]
DeBrota, D. J., R. S. Dittus, S. D. Roberts, and J. R. Wilson. 1989b. Visual interactive fitting of bounded Johnson distributions. SIMULATION 52 (5): 199--205. Available online via <www.ise.ncsu.edu/jwilson/files/debrota89sim.pdf> {accessed May 31, 2008}.
[7]
Elkins, D., A. C. LaFleur, E. Foster, J. Tew, B. Biller, and J. R. Wilson. 2007. Clinic: Correlated inputs in an automotive paint shop fire risk simulation. In Proceedings of the 2007 Winter Simulation Conference, ed. S. G. Henderson, B. Biller, M.-H. Hsieh, J. Shortle, J. D. Tew, and R. R. Barton, 250--259. Piscataway, New Jersey: Institute of Electrical and Electronics Engineers. Available online via <www.informs-sim.org/wsc07papers/028.pdf> {accessed January 26, 2008}.
[8]
Hahn, G. J., and S. S. Shapiro. 1967. Statistical models in engineering. New York: Wiley.
[9]
Harper, A. M., S. E. Taranto, E. B. Edwards, and O. P. Daily. 2000. An update on a successful simulation project: The UNOS liver allocation model. In Proceedings of the 2000 Winter Simulation Conference, ed. J. A. Joines, R. R. Barton, K. Kang, and P. A. Fish-wick, 1955--1962. Piscataway, New Jersey: Institute of Electrical and Electronics Engineers. Available online as <www.informs-sim.org/wsc00papers/267.pdf> {accessed May 31, 2008}.
[10]
Hill, I. D, R. Hill, and R. L. Holder. 1976. Algorithm AS99: Fitting Johnson curves by moments. Applied Statistics 25 (2): 180--189.
[11]
Johnson, N. L. 1949. Systems of frequency curves generated by methods of translation. Biometrika 36:149--176.
[12]
Kim, S.-H., and J. R. Wilson. 2006. A discussion on 'Detection of intrusions in information systems by sequential change-point methods' by Tartakovsky, Rozovskii, Blažek, and Kim. Statistical Methodology 3:315--319. Available online via <www.ise.ncsu.edu/jwilson/files/kim06statmeth.pdf> {accessed May 31, 2008}.
[13]
Kuhl, M. E., H. Damerdji, and J. R. Wilson. 1997. Estimating and simulating Poisson processes with trends or asymmetric cyclic effects. In Proceedings of the 1997 Winter Simulation Conference, ed. S. Andradóttir, K. J. Healy, D. H. Withers, and B. L. Nelson, 287--295. Piscataway, New Jersey: Institute of Electrical and Electronics Engineers. Available online via <www.informs-sim.org/wsc97papers/0287.pdf> {accessed May 31, 2008}.
[14]
Kuhl, M. E., S. C. Deo, and J. R. Wilson. 2008. Smooth flexible models of nonhomogeneous Poisson processes using one or more process realizations. In Proceedings of the 2008 Winter Simulation Conference, ed. S. J. Mason, R. Hill, L. Moench, and O. Rose, to appear. Piscataway, New Jersey: Institute of Electrical and Electronics Engineers.
[15]
Kuhl, M. E., E. K. Lada, N. M. Steiger, M. A. Wagner, and J. R. Wilson. 2006. Introduction to modeling and generating probabilistic input processes for simulation. In Proceedings of the 2006 Winter Simulation Conference, ed. L. F. Perrone, F. P. Wieland, J. Liu, B. G. Lawson, D. M. Nicol, and R. M. Fujimoto, 19--35. Available online via <www.informs-sim.org/wsc06papers/003.pdf> {accessed May 31, 2008}.
[16]
Kuhl, M. E., S. G. Sumant, and J. R. Wilson. 2006. An automated multiresolution procedure for modeling complex arrival processes. INFORMS Journal on Computing 18 (1): 3--18. Available online via <www.ise.ncsu.edu/jwilson/files/kuh106joc.pdf> {accessed May 31, 2008}.
[17]
Kuhl, M. E., and J. R. Wilson. 2000. Least squares estimation of nonhomogeneous Poisson processes. Journal of Statistical Computation and Simulation 67:75--108. Available online via <www.ise.ncsu.edu/jwilson/files/kuh100jscs.pdf> {accessed May 31, 2008}.
[18]
Kuhl, M. E., and J. R. Wilson. 2001. Modeling and simulating Poisson processes having trends or nontrigonometric cyclic effects. European Journal of Operational Research 133 (3): 566--582. Available online via <www.ise.ncsu.edu/jwilson/files/kuh101ejor.pdf> {accessed May 31, 2008}.
[19]
Kuhl, M. E., J. R. Wilson, and M. A. Johnson. 1997. Estimating and simulating Poisson processes having trends or multiple periodicities. IIE Transactions 29 (3): 201--211. Available online via <www.ise.ncsu.edu/jwilson/files/kuh197iie.pdf> {accessed May 31, 2008}.
[20]
Law, A. M. 2007. Simulation modeling and analysis. 4th ed. New York: McGraw-Hill.
[21]
Lee, S., J. R. Wilson, M. M. Crawford. 1991. Modeling and simulation of a nonhomogeneous Poisson process having cyclic behavior. Communications in Statistics---Simulation 20:777--809. Available online via <www.ise.ncsu.edu/jwilson/files/lee91.pdf> {accessed May 31, 2008}.
[22]
Leemis, L. M. 1991. Nonparametric estimation of the cumulative intensity function for a nonhomogeneous Poisson process. Management Science 37 (7): 886--900.
[23]
Leemis, L. M. 2000. Nonparametric estimation of the cumulative intensity function for a nonhomogeneous Poisson process from overlapping realizations. Management Science 46 (7): 989--998.
[24]
Leemis, L. M. 2004. Nonparametric estimation and variate generation for a nonhomogeneous Poisson process from event count data. IIE Transactions 36 (12): 1155--1160.
[25]
Lewis, P. A. W., and G. S. Shedler. 1976. Statistical analysis of non-stationary series of events in a data base system. IBM Journal of Research and Development 20:465--482.
[26]
Matthews, J. L., E. K. Lada, L. M. Weiland, R. C. Smith, and D. J. Leo. 2006. Monte Carlo simulation of a solvated ionic polymer with cluster morphology. Smart Materials and Structures 15 (1): 187--199. Available online via <www.ise.ncsu.edu/jwilson/files/matthews06sms.pdf> {accessed May 31, 2008}.
[27]
McBride, W. J., and C. W. McClelland. 1967. PERT and the beta distribution. IEEE Transactions on Engineering Management EM-14 (4): 166--169.
[28]
Park, Y. 2005. A statistical process control approach for network intrusion detection. Ph.D. thesis, School of Industrial and Systems Engineering, Atlanta, Georgia. Available online via <hdl.handle.net/1853/6835> {accessed May 31, 2008}.
[29]
Pearlswig, D. M. 1995. Simulation modeling applied to the single pot processing of effervescent tablets. Master's thesis, Integrated Manufacturing Systems Engineering Institute, North Carolina State University, Raleigh, North Carolina. Available online via <www.ise.ncsu.edu/jwilson/files/pearlswig95.pdf> {accessed May 31, 2008}.
[30]
Pritsker, A. A. B., D. L. Martin, J. S. Reust, M. A. Wagner, O. P. Daily, A. M. Harper, E. B. Edwards, L. E. Bennett, J. R. Wilson, M. E. Kuhl, J. P. Roberts, M. D. Allen, and J. F. Burdick. 1995. Organ transplantation policy evaluation. In Proceedings of the 1995 Winter Simulation Conference, ed. C. Alexopoulos, K. Kang, W. R. Lilegdon, and D. Goldsman, 1314--1323. Piscataway, New Jersey: Institute of Electrical and Electronics Engineers. Available online via <www.ise.ncsu.edu/jwilson/files/pritsker95wsc.pdf> {accessed May 31, 2008}.
[31]
Swain, J. J., S. Venkatraman, and J. R. Wilson. 1988. Least-squares estimation of distribution functions in Johnson's translation system. Journal of Statistical Computation and Simulation 29:271--297. Available online via <www.ise.ncsu.edu/jwilson/files/jnsn88jscs.pdf> {accessed May 31, 2008}.
[32]
Wagner, M. A. F., and J. R. Wilson. 1996a. Using univariate Bézier distributions to model simulation input processes. IIE Transactions 28 (9): 699--711. Available online as <www.ise.ncsu.edu/jwilson/files/wagner96iie.pdf> {accessed May 31, 2008}.
[33]
Wagner, M. A. F., and J. R. Wilson. 1996b. Recent developments in input modeling with Bézier distributions. In Proceedings of the 1996 Winter Simulation Conference, ed. J. M. Charnes, D. J. Morrice, D. T. Brunner, and J. J. Swain, 1448--1456. Piscataway, New Jersey: Institute of Electrical and Electronics Engineers. Available online as <www.ise.ncsu.edu/jwilson/files/wagner96wsc.pdf> {accessed May 31, 2008}.
[34]
Weiland, L. M., E. K. Lada, R. C. Smith, and D. J. Leo. 2005. Application of rotational isomeric state theory to ionic polymer stiffness predictions. Journal of Materials Research 20 (9): 2443--2455. Available online via <www.ise.ncsu.edu/jwilson/files/weiland05jmr.pdf> {accessed May 31, 2008}.
[35]
Zouaoui, F., and J. R. Wilson. 2003. Accounting for parameter uncertainty in simulation input modeling. IIE Transactions 35 (3): 781--792. Available online via <www.ise.ncsu.edu/jwilson/files/zouaoui03iie.pdf> {accessed May 31, 2008}.
[36]
Zouaoui, F., and J. R. Wilson. 2004. Accounting for input-model and input-parameter uncertainties in simulation. IIE Transactions 36 (11): 1135--1151. Available online via <www.ise.ncsu.edu/jwilson/files/zouaoui04iie.pdf> {accessed May 31, 2008}.

Cited By

View all
  • (2017)History of input modelingProceedings of the 2017 Winter Simulation Conference10.5555/3242181.3242194(1-21)Online publication date: 3-Dec-2017
  • (2012)A macro-economic model to forecast remittances based on Monte-Carlo simulation and artificial intelligenceExpert Systems with Applications: An International Journal10.1016/j.eswa.2012.01.10839:9(7929-7937)Online publication date: 1-Jul-2012
  • (2011)A modeling framework that combines markov models and discrete-event simulation for stroke patient careACM Transactions on Modeling and Computer Simulation10.1145/2000494.200049821:4(1-26)Online publication date: 2-Sep-2011
  • Show More Cited By

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Conferences
WSC '08: Proceedings of the 40th Conference on Winter Simulation
December 2008
3189 pages
ISBN:9781424427086

Sponsors

  • IIE: Institute of Industrial Engineers
  • INFORMS-SIM: Institute for Operations Research and the Management Sciences: Simulation Society
  • ASA: American Statistical Association
  • IEEE/SMC: Institute of Electrical and Electronics Engineers: Systems, Man, and Cybernetics Society
  • SIGSIM: ACM Special Interest Group on Simulation and Modeling
  • NIST: National Institute of Standards and Technology
  • (SCS): The Society for Modeling and Simulation International

Publisher

Winter Simulation Conference

Publication History

Published: 07 December 2008

Check for updates

Qualifiers

  • Research-article

Conference

WSC08
Sponsor:
  • IIE
  • INFORMS-SIM
  • ASA
  • IEEE/SMC
  • SIGSIM
  • NIST
  • (SCS)
WSC08: Winter Simulation Conference
December 7 - 10, 2008
Florida, Miami

Acceptance Rates

WSC '08 Paper Acceptance Rate 249 of 304 submissions, 82%;
Overall Acceptance Rate 3,413 of 5,075 submissions, 67%

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 25 Jan 2025

Other Metrics

Citations

Cited By

View all
  • (2017)History of input modelingProceedings of the 2017 Winter Simulation Conference10.5555/3242181.3242194(1-21)Online publication date: 3-Dec-2017
  • (2012)A macro-economic model to forecast remittances based on Monte-Carlo simulation and artificial intelligenceExpert Systems with Applications: An International Journal10.1016/j.eswa.2012.01.10839:9(7929-7937)Online publication date: 1-Jul-2012
  • (2011)A modeling framework that combines markov models and discrete-event simulation for stroke patient careACM Transactions on Modeling and Computer Simulation10.1145/2000494.200049821:4(1-26)Online publication date: 2-Sep-2011
  • (2009)Representing and generating uncertainty effectivelyWinter Simulation Conference10.5555/1995456.1995466(40-44)Online publication date: 13-Dec-2009

View Options

Login options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media