Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.5555/1619995.1620054guideproceedingsArticle/Chapter ViewAbstractPublication PagesConference Proceedingsacm-pubtype
Article

Backdoor trees

Published: 13 July 2008 Publication History

Abstract

The surprisingly good performance of modem satisfiability (SAT) solvers is usually explained by the existence of a certain "hidden structure" in real-world instances. We introduce the notion of backdoor trees as an indicator for the presence of a hidden structure. Backdoor trees refine the notion of strong backdoor sets, taking into account the relationship between backdoor variables. We present theoretical and empirical results. Our theoretical results are concerned with the computational complexity of detecting small backdoor trees. With our empirical results we compare the size of backdoor trees against the size of backdoor sets for real-world SAT instances and random 3SAT instances of various density. The results indicate that backdoor trees amplify the properties that have been observed for backdoor sets.

References

[1]
Chen, J.; and Kanj, I. A. 2005. On approximating minimum vertex cover for graphs with perfect matching. Theoret. Comput. Sci. 337(1-3):305-318.
[2]
Crama, Y.; Ekin, 0.; and Hammer, P. L. 1997. Variable and term removal from Boolean fonnulae. Discr. Appl. Math. 75(3):217-230.
[3]
Dilkina, B. N.; Gomes, C. P.; and Sabharwal, A. 2007. Tradeoffs in the complexity of backdoor detection. In Proc. CP'07, LNCS 4741,256-270. Springer-Verlag.
[4]
Downey, R. G.; and Fellows, M. R. 1999. Parameterized Complexity. Springer-Verlag.
[5]
Flum, J.; and Grohe, M. 2006. Parameterized Complexity Theory. Springer-Verlag.
[6]
Gottlob, G.; Pichler, R.; and Wei, F. 2006. Bounded treewidth as a key to tractability of knowledge representation and reasoning. In Proc. AAAI'06, 250-256. AAAI Press.
[7]
Gottlob, G.; and Szeider, S. 2006. Fixed-parameter algorithms for artificial intelligence, constraint satisfaction, and database problems. The Computer Journal.
[8]
Impagliazzo, R; Paturi, R.; and Zane, F. 2001. Which problems have strongly exponential complexity. J. of Computer and System Sciences 63(4):512-530.
[9]
Interian, Y. 2003. Backdoor sets for random 3-SAT. In Proc. SAT'03, 231-238. Informal Proc.
[10]
Kilby, P.; Slaney, J. K.; Thiébaux, S.; and Walsh, T. 2005. Backbones and backdoors in satisfiability. In Proc. AAAI'05, 1368-1373. AAAI Press.
[11]
Lynce, I.; and Marques-Silva, J. P. 2004. Hidden structure in unsatisfiable random 3-SAT: An empirical study. In Proc. ICTAI'04, 246-251. IEEE Computer Society.
[12]
Niedermeier, R. 2006. Invitation to Fixed-Parameter Algorithms . Oxford Univ. Press.
[13]
Nishimura, N.; Ragde, P.; and Szeider, S. 2004. Detecting backdoor sets with respect to Horn and binary clauses. In Proc. SAT'04, 96-103. Informal Proc.
[14]
Nishimura, N.; Ragde, P.; and Szeider, S. 2007. Solving #SAT using vertex covers. Acta Informatica 44(7-8):509-523.
[15]
Razgon, I.; and O'Sullivan, B. 2008. Almost 2-SAT is fixed-parameter tractable. arXiv:0801.1300.
[16]
Ruan, Y.; Kautz, H. A.; and Horvitz, E. 2004. The backdoor key: A path to understanding problem hardness. In Proc. AAAI'04, 124-130. AAAI Press.
[17]
Samer, M.; and Szeider, S. 2007a. Backdoor sets of quantified Boolean formulas. In Proc. SAT'07, LNCS 4501, 230-243. Springer-Verlag.
[18]
Samer, M.; and Szeider, S. 2007b. Algorithms for propositional model counting. In Proc. LPAR'07, LNCS 4790, 484-498. Springer-Verlag.
[19]
Sinz, C.; Kaiser, A.; and Küchlin, W. 2003. Formal methods for the validation of automotive product configuration data. Artificial Intelligence for Engineering Design, Analysis and Manufacturing 17(1):75-97.
[20]
Szeider, S. 2005. Backdoor sets for DLL subsolvers. J. of Automated Reasoning 35(1-3):73-88.
[21]
Vazirani, V. V. 2001. Approximation Algorithms. Springer-Verlag.
[22]
Williams, R.; Gomes, C.; and Selman, B. 2003a. Backdoors to typical case complexity. In Proc. IJCAI'03, 1173-1178. Morgan Kaufmann.
[23]
Williams, R.; Gomes, C.; and Selman, B. 2003b. On the connections between backdoors, restarts, and heavy-tailedness in combinatorial search. In Proc. SAT'03, 222-230. Informal Proc.

Cited By

View all

Recommendations

Comments

Information & Contributors

Information

Published In

cover image Guide Proceedings
AAAI'08: Proceedings of the 23rd national conference on Artificial intelligence - Volume 1
July 2008
596 pages
ISBN:9781577353683

Sponsors

  • Association for the Advancement of Artificial Intelligence

Publisher

AAAI Press

Publication History

Published: 13 July 2008

Qualifiers

  • Article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 25 Jan 2025

Other Metrics

Citations

Cited By

View all
  • (2017)On the kernelization of global constraintsProceedings of the 26th International Joint Conference on Artificial Intelligence10.5555/3171642.3171726(578-584)Online publication date: 19-Aug-2017
  • (2017)Paradigms for Parameterized EnumerationTheory of Computing Systems10.1007/s00224-016-9702-460:4(737-758)Online publication date: 1-May-2017
  • (2012)Backdoors to satisfactionThe Multivariate Algorithmic Revolution and Beyond10.5555/2344236.2344253(287-317)Online publication date: 1-Jan-2012
  • (2012)SIGACT News Complexity Theory Column 76ACM SIGACT News10.1145/2421119.242113543:4(70-89)Online publication date: 19-Dec-2012
  • (2012)Backdoors to acyclic SATProceedings of the 39th international colloquium conference on Automata, Languages, and Programming - Volume Part I10.1007/978-3-642-31594-7_31(363-374)Online publication date: 9-Jul-2012
  • (2011)Finding small backdoors in SAT instancesProceedings of the 24th Canadian conference on Advances in artificial intelligence10.5555/2018192.2018225(269-280)Online publication date: 25-May-2011

View Options

View options

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media