Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.5555/1731309.1731339guideproceedingsArticle/Chapter ViewAbstractPublication PagesConference Proceedingsacm-pubtype
research-article

Maximum entropy coordinates for arbitrary polytopes

Published: 02 July 2008 Publication History

Abstract

Barycentric coordinates can be used to express any point inside a triangle as a unique convex combination of the triangle's vertices, and they provide a convenient way to linearly interpolate data that is given at the vertices of a triangle. In recent years, the ideas of barycentric coordinates and barycentric interpolation have been extended to arbitrary polygons in the plane and general polytopes in higher dimensions, which in turn has led to novel solutions in applications like mesh parameterization, image warping, and mesh deformation. In this paper we introduce a new generalization of barycentric coordinates that stems from the maximum entropy principle. The coordinates are guaranteed to be positive inside any planar polygon, can be evaluated efficiently by solving a convex optimization problem with Newton's method, and experimental evidence indicates that they are smooth inside the domain. Moreover, the construction of these coordinates can be extended to arbitrary polyhedra and higher-dimensional polytopes.

References

[1]
{AO06} Arroyo M., Ortiz M.: Local maximum-entropy approximation schemes: a seamless bridge between finite elements and meshfree methods. Int. J. Numer. Methods Eng. 65, 13 (Mar. 2006), 2167--2202.
[2]
{Bel06} Belyaev A.: On transfinite barycentric coordinates. In Geometry Processing (2006), Eurographics Symposium Proceedings, Eurographics Association, pp. 89--99.
[3]
{BF04} Burden R. L., Faires J. D.: Numerical Analysis, eighth ed. Brooks/Cole, Belmont, CA, 2004.
[4]
{BV04} Boyd S., Vandenberghe L.: Convex Optimization. Cambridge University Press, Cambridge, UK, 2004.
[5]
{DF08} Dyken C., Floater M. S.: Transfinite mean value interpolation. Comput. Aided Geom. Des. (2008). To appear.
[6]
{EDD*95} Eck M., DeRose T., Duchamp T., Hoppe H., Lounsbery M., Stuetzle W.: Multiresolution analysis of arbitrary meshes. In Proceedings of SIGGRAPH 95 (1995), ACM Press, pp. 173--182.
[7]
{FHK06} Floater M. S., Hormann K., Kós G.: A general construction of barycentric coordinates over convex polygons. Adv. Comput. Math. 24, 1--4 (Jan. 2006), 311--331.
[8]
{FKR05} Floater M. S., Kós G., Reimers M.: Mean value coordinates in 3D. Comput. Aided Geom. Des. 22, 7 (Oct. 2005), 623--631.
[9]
{Flo03} Floater M. S.: Mean value coordinates. Comput. Aided Geom. Des. 20, 1 (Mar. 2003), 19--27.
[10]
{HF06} Hormann K., Floater M. S.: Mean value coordinates for arbitrary planar polygons. ACM Trans. Graph. 25, 4 (Oct. 2006), 1424--1441.
[11]
{HT04} Hormann K., Tarini M.: A quadrilateral rendering primitive. In Graphics Hardware (2004), Eurographics Symposium Proceedings, Eurographics Association, pp. 7--14.
[12]
{Jay57} Jaynes E. T.: Information theory and statistical mechanics. Phys. Rev. 106, 4 (May 1957), 620--630.
[13]
{Jay63} Jaynes E. T.: Information theory and statistical mechanics. In Statistical Physics, Ford K. W., (Ed.), vol. 3 of 1962 Brandeis Lectures in Theoretical Physics. W. A. Benjamin, New York, 1963, pp. 181--218.
[14]
{Jay03} Jaynes E. T.: Probability Theory: The Logic of Science. Cambridge University Press, Cambridge, UK, 2003.
[15]
{JLW07} Ju T., Liepa P., Warren J.: A general geometric construction of coordinates in a convex simplicial polytope. Comput. Aided Geom. Des. 24, 3 (Apr. 2007), 161--178.
[16]
{JMD*07} Joshi P., Meyer M., DeRose T., Green B., Sanocki T.: Harmonic coordinates for character articulation. ACM Trans. Graph. 26, 3 (July 2007), 71/1--71/9. Proceedings of ACM SIGGRAPH 2007.
[17]
{JSW05} Ju T., Schaefer S., Warren J.: Mean value coordinates for closed triangular meshes. ACM Trans. Graph. 24, 3 (July 2005), 561--566. Proceedings of ACM SIGGRAPH 2005.
[18]
{Khi57} Khinchin A.: Mathematical Foundations of Information Theory. Dover, New York, NY, 1957.
[19]
{KL51} Kullback S., Leibler R. A.: On information and sufficiency. Ann. Math. Statist. 22, 1 (Mar. 1951), 79--86.
[20]
{LBS06} Langer T., Belyaev A., Seidel H.-P.: Spherical barycentric coordinates. In Geometry Processing (2006), Eurographics Symposium Proceedings, Eurographics Association, pp. 81--88.
[21]
{LBS07} Langer T., Belyaev A., Seidel H.-P.: Mean value coordinates for arbitrary spherical polygons and polyhedra in R3. In Curve and Surface Design: Avignon 2006, Chenin P., Lyche T., Schumaker L. L., (Eds.), Modern Methods in Applied Mathematics. Nashboro Press, Brentwood, TN, 2007, pp. 193--202.
[22]
{LD89} Loop C. T., DeRose T. D.: A multisided generalization of Bézier surfaces. ACM Trans. Graph. 8, 3 (July 1989), 204--234.
[23]
{LKCOL07} Lipman Y., Kopf J., Cohen-Or D., Levin D.: GPU-assisted positive mean value coordinates for mesh deformations. In Geometry Processing (2007), Eurographics Symposium Proceedings, Eurographics Association, pp. 117--123.
[24]
{LS07} Langer T., Seidel H.-P.: Mean value Bézier surfaces. In Mathematics of Surfaces XII, Martin R., Sabin M., Winkler J., (Eds.), vol. 4647 of Lecture Notes in Computer Science. Springer, 2007, pp. 263--274. Proceedings of the 12th IMA International Conference.
[25]
{LS08} Langer T., Seidel H.-P.: Higher order barycentric coordinates. Comput. Graph. Forum 27, 2 (Apr. 2008), 459--466. Proceedings of Eurographics 2008.
[26]
{MLBD02} Meyer M., Lee H., Barr A., Desbrun M.: Generalized barycentric coordinates on irregular polygons. J. Graph. Tools 7, 1 (2002), 13--22.
[27]
{MLD05} Malsch E. A., Lin J. J., Dasgupta G.: Smooth two dimensional interpolants: a recipe for all polygons. J. Graph. Tools 10, 2 (2005), 27--39.
[28]
{Möb27} Möbius A. F.: Der barycentrische Calcul. Johann Am-brosius Barth, Leipzig, 1827.
[29]
{MP07} Milbradt P., Pick T.: Polytope finite elements. Int. J. Numer. Methods Eng. 73, 12 (July 2007), 1811--1835.
[30]
{PP93} Pinkall U., Polthier K.: Computing discrete minimal surfaces and their conjugates. Exp. Math. 2, 1 (1993), 15--36.
[31]
{Raj94} Rajan V. T.: Optimality by the Delaunay triangulation in Rd. Discrete Comput. Geom. 12, 1 (Dec. 1994), 189--202.
[32]
{Rus08} Rustamov R. M.: Boundary Element Formulation of Harmonic Coordinates. Tech. rep., Department of Mathematics, Purdue University, 2008.
[33]
{Sha48} Shannon C. E.: A mathematical theory of communication. Bell Systems Technical Journal 27 (July, Oct. 1948), 379--423, 623--656.
[34]
{She68} Shepard D.: A two-dimensional interpolation function for irregularly-spaced data. In Proceedings of the 23rd ACM National Conference (1968), ACM Press, pp. 517--524.
[35]
{She02} Shewchuk J. R.: Delaunay refinement algorithms for triangular mesh generation. Comput. Geom. 22, 1--3 (May 2002), 21--74.
[36]
{SJ80} Shore J. E., Johnson R. W.: Axiomatic derivation of the principle of maximum entropy and the principle of minimum cross-entropy. IEEE Trans. Inf. Theory 26, 1 (Jan. 1980), 26--37.
[37]
{SJW07} Schaefer S., Ju T., Warren J.: A unified, integral construction for coordinates over closed curves. Comput. Aided Geom. Des. 24, 8--9 (Nov. & Dec. 2007), 481--493.
[38]
{SM06} Sukumar N., Malsch E. A.: Recent advances in the construction of polygonal finite element interpolants. Arch. Comput. Methods Eng. 13, 1 (Mar. 2006), 129--163.
[39]
{Suk04} Sukumar N.: Construction of polygonal interpolants: a maximum entropy approach. Int. J. Numer. Methods Eng. 61, 12 (Nov. 2004), 2159--2181.
[40]
{SW07a} Sukumar N., Wets R. J-B: Deriving the continuity of maximum-entropy basis functions via variational analysis. SIAM J. Optim. 18, 3 (2007), 914--925.
[41]
{SW07b} Sukumar N., Wright R. W.: Overview and construction of meshfree basis functions: from moving least squares to entropy approximants. Int. J. Numer. Methods Eng. 70, 2 (Apr. 2007), 181--205.
[42]
{Tol03} Toledo S.: TAUCS: A library of sparse linear solvers. http://www.tau.ac.il/~stoledo/taucs/, 2003.
[43]
{TS08} Tabarraei A., Sukumar N.: Extended finite element method on polygonal and quadtree meshes. Comput. Meth. Appl. Mech. Eng. 197, 5 (Jan. 2008), 425--438.
[44]
{Wac75} Wachspress E. L.: A Rational Finite Element Basis, vol. 114 of Mathematics in Science and Engineering. Academic Press, 1975.
[45]
{War96} Warren J.: Barycentric coordinates for convex polytopes. Adv. Comput. Math. 6, 2 (1996), 97--108.
[46]
{WBG07} Wicke M., Botsch M., Gross M.: A finite element method on convex polyhedra. Comput. Graph. Forum 26, 3 (Sept. 2007), 355--364. Proceedings of Eurographics 2007.
[47]
{WSHD07} Warren J., Schaefer S., Hirani A. N., Desbrun M.: Barycentric coordinates for convex sets. Adv. Comput. Math. 27, 3 (Oct. 2007), 319--338.

Cited By

View all

Recommendations

Comments

Information & Contributors

Information

Published In

cover image Guide Proceedings
SGP '08: Proceedings of the Symposium on Geometry Processing
July 2008
215 pages

Publisher

Eurographics Association

Goslar, Germany

Publication History

Published: 02 July 2008

Qualifiers

  • Research-article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 06 Oct 2024

Other Metrics

Citations

Cited By

View all

View Options

View options

Get Access

Login options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media