Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.5555/1733023.1733255guideproceedingsArticle/Chapter ViewAbstractPublication PagesConference Proceedingsacm-pubtype
Article

Haptic display of realistic tool contact via dynamically compensated control of a dedicated actuator

Published: 10 October 2009 Publication History

Abstract

High frequency contact accelerations convey important information that the vast majority of haptic interfaces cannot render. Building on prior work, we present an approach to haptic interface design that uses a dedicated linear voice coil actuator and a dynamic system model to allow the user to feel these signals. This approach was tested through use in a bilateral teleoperation experiment where a user explored three textured surfaces under three different acceleration control architectures: none, constant gain, and dynamic compensation. The controllers that use the dedicated actuator vastly outperform traditional position-position control at conveying realistic contact accelerations. Analysis of root mean square error, linear regression, and discrete Fourier transforms of the acceleration data also indicate a slight performance benefit for dynamic compensation over constant gain.

References

[1]
J. Bell, S. Bolanowski, and M. H. Holmes. The structure and function of Pacinian corpuscles: A review. Progress in Neurobiology, 42(1):79- 128, Jan. 1994.
[2]
J. E. Colgate, M. C. Stanley, and G. Schenkel. Dynamic range of achievable impedances in force reflecting interfaces. In Proc. SPIE Telemanipulator Technology and Space Telerobotics Conference, volume 2057, pages 199-210, Boston, Massachusetts, September 1993.
[3]
D. Constantinescu, S. E. Salcudean, and E. A. Croft. Haptic rendering of rigid body contacts using impulsive and penalty forces. IEEE Transactions on Robotics, pages 309-323, June 2005.
[4]
R. Daniel and P. McAree. Fundamental limits of performance for force reflecting teleoperation. Int. Journal of Robotics Research, 17(8):811- 830, Aug. 1998.
[5]
J. T. Dennerlein, P. A. Millman, and R. D. Howe. Vibrotactile feedback for industrial telemanipulators. In Sixth Annual Symposium on Haptic Interfaces for Virtual Environments and Teleoperator Systems, Nov. 1997.
[6]
N. Diolaiti, G. Niemeyer, F. Barbagli, and J. K. Salisbury. Stability of haptic rendering: Discretization, quantization, time delay, and Coulomb effects. IEEE Transactions on Robotics, 22(2):256-268, Apr. 2006.
[7]
J. P. Fiene and K. J. Kuchenbecker. Shaping event-based haptic transients via an improved understanding of real contact dynamics. In Proc. IEEE World Haptics Conference, pages 170-175, March 2007.
[8]
S. Greenish, V. Hayward, V. Chial, A. M. Okamura, and T. Steffen. Measurement, analysis and display of haptic signals during surgical cutting. Presence, 11(6):626-651, 2002.
[9]
M. Hollins and S. R. Risner. Evidence for the duplex theory of tactile texture perception. Perception and Psychophysics, 62(4):695- 705, May 2000.
[10]
R. L. Klatzky and S. J. Lederman. Haptic Rendering: Algorithms and Applications, chapter 1: Perceiving Object Properties Through A Rigid Link. A. K. Peters, 2008.
[11]
D. Kontarinis, J. Son, W. Peine, and R. Howe. A tactile shape sensing and display system for teleoperated manipulation. In Proc. IEEE International Conference on Robotics and Automation, pages 641- 646, May 1995.
[12]
D. A. Kontarinis and R. D. Howe. Tactile display of vibratory information in teleoperation and virtual environments. Presence: Teleoperators and Virtual Environments, 4(4):387-402, Aug. 1995.
[13]
K. J. Kuchenbecker, J. P. Fiene, and G. Niemeyer. Improving contact realism through event-based haptic feedback. IEEE Transactions on Visualization and Computer Graphics, 12(2):219-230, March/April 2006.
[14]
K. J. Kuchenbecker and G. Niemeyer. Improving telerobotic touch via high-frequency acceleration matching. In Proc. IEEE International Conference on Robotics and Automation, pages 3893-3898, May 2006.
[15]
K. J. Kuchenbecker, J. G. Park, and G. Niemeyer. Characterizing the human wrist for improved haptic interaction. In Proc. ASME International Mechanical Engineering Congress and Exposition, Symposium on Advances in Robot Dynamics and Control, volume 2, paper number 42017, Nov. 2003.
[16]
R. H. LaMotte. Softness discrimination with a tool. Journal of Neurophysiology, 83:1777-1786, 2000.
[17]
J. C. Lee, P. H. Dietz, D. Leigh, W. S. Yerazunis, and S. E. Hudson. Haptic pen: A tactile feedback stylus for touch screens. In Proc. ACM Symposium on User Interface Software and Technology, volume 6, pages 291-294, October 2004.
[18]
C. Liao, F. Guimbretiere, and C. E. Loeckenhoff. Pen-top feedback for paper-based interfaces. In Proc. ACM Symposium on User Interface Software and Technology, pages 201-210, 2006.
[19]
J. M. Loomis. Distal attribution and presence. Presence: Teleoperators and Virtual Environments, 1(1):113-119, 1992.
[20]
J. M. Loomis and S. J. Lederman. Tactual perception. In K. R. Boff, L. Kaufman, and J. P. Thomas, editors, Handbook of Perception and Human Performance, volume II: Cognitive Processes and Performance, chapter 31. John Wiley and Sons, 1986.
[21]
A. M. Okamura, M. R. Cutkosky, and J. T. Dennerlein. Reality-based models for vibration feedback in virtual environments. IEEE/ASME Transactions on Mechatronics, 6(3):245-252, Sept. 2001.
[22]
A. M. Okamura, J. T. Dennerlein, and R. D. Howe. Vibration feedback models for virtual environments. In Proc. IEEE International Conference on Robotics and Automation, volume 3, pages 674-679, May 1998.
[23]
K. Salisbury, D. Brock, T. Massie, N. Swarup, and C. Zilles. Haptic rendering: Programming touch interaction with virtual objects. In Proceedings of the Symposium on Interactive 3D Graphics, pages 123- 130. ACM, 1995.
[24]
S. A. Wall and W. Harwin. A high bandwidth interface for haptic human computer interaction. Mechatronics, 11(4):371-387, June 2001.
[25]
S. A. Wall and W. S. Harwin. Effects of physical bandwidth on perception of virtual gratings. In Proc. ASME Int. Mechanical Engineering Congress and Exposition, pages 1033-1047, 2000.
[26]
P. Wellman and R. D. Howe. Towards realistic vibrotactile display in virtual environments. In Proc. ASME Dynamic Systems and Control Division, volume 57, pages 713-718, 1995.
[27]
H.-Y. Yao, V. Hayward, and R. E. Ellis. A tactile enhancement instrument for minimally invasive surgery. Computer-Aided Surgery, 10(4):233-239, 2005.

Cited By

View all
  • (2016)Evaluation of haptic interfaces for simulation of drill vibration in virtual temporal bone surgeryComputers in Biology and Medicine10.1016/j.compbiomed.2016.09.00578:C(9-17)Online publication date: 1-Nov-2016
  • (2012)Haptic duplicatorProceedings of the 2012 Virtual Reality International Conference10.1145/2331714.2331749(1-2)Online publication date: 28-Mar-2012
  • (2012)Spectral subtraction of robot motion noise for improved event detection in tactile acceleration signalsProceedings of the 2012 international conference on Haptics: perception, devices, mobility, and communication - Volume Part I10.1007/978-3-642-31401-8_30(326-337)Online publication date: 13-Jun-2012
  • Show More Cited By

Recommendations

Comments

Information & Contributors

Information

Published In

cover image Guide Proceedings
IROS'09: Proceedings of the 2009 IEEE/RSJ international conference on Intelligent robots and systems
October 2009
5973 pages
ISBN:9781424438037

Sponsors

  • SICE: Society of Instrument and Control Engineers
  • RA: IEEE Robotics and Automation Society
  • ICROS: Institute of Control, Robotics and Systems in Korea

Publisher

IEEE Press

Publication History

Published: 10 October 2009

Qualifiers

  • Article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 01 Jan 2025

Other Metrics

Citations

Cited By

View all
  • (2016)Evaluation of haptic interfaces for simulation of drill vibration in virtual temporal bone surgeryComputers in Biology and Medicine10.1016/j.compbiomed.2016.09.00578:C(9-17)Online publication date: 1-Nov-2016
  • (2012)Haptic duplicatorProceedings of the 2012 Virtual Reality International Conference10.1145/2331714.2331749(1-2)Online publication date: 28-Mar-2012
  • (2012)Spectral subtraction of robot motion noise for improved event detection in tactile acceleration signalsProceedings of the 2012 international conference on Haptics: perception, devices, mobility, and communication - Volume Part I10.1007/978-3-642-31401-8_30(326-337)Online publication date: 13-Jun-2012
  • (2010)Dimensional reduction of high-frequency accelerations for haptic renderingProceedings of the 2010 international conference on Haptics - generating and perceiving tangible sensations: Part II10.5555/1893760.1893773(79-86)Online publication date: 8-Jul-2010
  • (2010)VerroTouchProceedings of the 2010 international conference on Haptics: generating and perceiving tangible sensations, Part I10.5555/1884164.1884194(189-196)Online publication date: 8-Jul-2010
  • (2010)VerroTouchProceedings, Part I, of the International Conference on Haptics: Generating and Perceiving Tangible Sensations - Volume 619110.1007/978-3-642-14064-8_28(189-196)Online publication date: 8-Jul-2010

View Options

View options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media