Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.5555/1735603.1735621guideproceedingsArticle/Chapter ViewAbstractPublication PagesConference Proceedingsacm-pubtype
research-article

A concise and provably informative multi-scale signature based on heat diffusion

Published: 15 July 2009 Publication History
  • Get Citation Alerts
  • Abstract

    We propose a novel point signature based on the properties of the heat diffusion process on a shape. Our signature, called the Heat Kernel Signature (or HKS), is obtained by restricting the well-known heat kernel to the temporal domain. Remarkably we show that under certain mild assumptions, HKS captures all of the information contained in the heat kernel, and characterizes the shape up to isometry. This means that the restriction to the temporal domain, on the one hand, makes HKS much more concise and easily commensurable, while on the other hand, it preserves all of the information about the intrinsic geometry of the shape. In addition, HKS inherits many useful properties from the heat kernel, which means, in particular, that it is stable under perturbations of the shape. Our signature also provides a natural and efficiently computable multi-scale way to capture information about neighborhoods of a given point, which can be extremely useful in many applications. To demonstrate the practical relevance of our signature, we present several methods for non-rigid multi-scale matching based on the HKS and use it to detect repeated structure within the same shape and across a collection of shapes.

    References

    [1]
    {BBK*09} Bronstein A. M., Bronstein M. M., Kimmel R., Mahmoudi M., Sapiro G.: A Gromov-Hausdorff framework with diffusion geometry for topologically-robust non-rigid shape matching. Submitted to the Intl. Journal of Computer Vision (IJCV) (2009).
    [2]
    {BMP00} Belongie S., Malik J., Puzicha J.: Shape context: A new descriptor for shape matching and object recognition. In In NIPS (2000), pp. 831--837.
    [3]
    {BSW08} Belkin M., Sun J., Wang Y.: Discrete Laplace operator on meshed surfaces. In Proceedings of SOCG (2008), pp. 278--287.
    [4]
    {Che76} Cheng S.-Y.: Eigenfunctions and nodal sets. Commentarii Mathematici Helvetici 51, 1 (1976), 43--55.
    [5]
    {CJ97} Chua C. S., Jarvis R.: Point signatures: A new representation for 3d object recognition. Int. J. Comput. Vision 25, 1 (1997), 63--85.
    [6]
    {CZHZ98} Chen Z.-Q., Z. Qian, Hu Y., Zheng W.: Stability and approximations of symmetric diffusion semigroups and kernels. Journal of Functional Analysis 152, 1 (1998), 255--280.
    [7]
    {dGGV08} de Goes F., Goldenstein S., Velho L.: A hierarchical segmentation of articulated bodies. Computer Graphics Forum 27, 5 (July 2008), 1349--1356.
    [8]
    {GMGP05} Gelfand N., Mitra N. J., Guibas L. J., Pottmann H.: Robust global registration. In Symposium on Geometry Processing (2005), pp. 197--206.
    [9]
    {Gri06} Grigor'yan A.: Heat kernels on weighted manifolds and applications. Cont. Math 398 (2006), 93--191.
    [10]
    {GSCO07} Gal R., Shamir A., Cohen-Or D.: Pose-oblivious shape signature. IEEE Transactions on Visualization and Computer Graphics 13, 2 (2007), 261--271.
    [11]
    {GVL96} Golub G. H., Van Loan C. F.: Matrix computations (3rd ed.). Johns Hopkins University Press, 1996.
    [12]
    {Hör85} Hörmander L.: The Analysis of Linear Partial Differential Operators, IV: Fourier Integral Operators. Grundlehren. Math. Wiss. 275, Springer, Berlin, 1985.
    [13]
    {HSKK01} Hilaga M., Shinagawa Y., Kohmura T., Kunii T. L.: Topology matching for fully automatic similarity estimation of 3d shapes. In Proc. SIGGRAPH (2001), pp. 203--212.
    [14]
    {Hsu02} Hsu E. P.: Stochastic Analysis on Manifolds. American Mathematical Society, 2002.
    [15]
    {Joh97} Johnson A.: Spin-Images: A Representation for 3-D Surface Matching. PhD thesis, Robotics Institute, Carnegie Mellon University, Pittsburgh, PA, August 1997.
    [16]
    {Laf04} Lafon S.: Diffusion Maps and Geometric Harmonics. PhD thesis, Yale University, 2004.
    [17]
    {LG05} Li X., Guskov I.: Multi-scale features for approximate alignment of point-based surfaces. In Symposium on Geometry processing (2005), pp. 217--226.
    [18]
    {MDSB02} Meyer M., Desbrun M., Schröder P., Barr A. H.: Discrete differential geometry operators for triangulated 2-manifolds. In Proc. VisMath'02 (Berlin, Germany, 2002).
    [19]
    {MP49} Minakshisundaram S., Pleijel A.: Some properties of the eigenfunctions of the Laplace operator on riemannian manifolds. Can. J. Math (1949).
    [20]
    {MYHS04} Manay S., Yezzi A. J., Hong B. W., Soatto S.: Integral invariant signatures. In Proceedings of ECCV (2004), pp. 87--99.
    [21]
    {OFCD02} Osada R., Funkhouser T., Chazelle B., Dobkin D.: Shape distributions. ACM Transactions on Graphics 21, 4 (Oct. 2002), 807--832.
    [22]
    {OSG08} Ovsjanikov M., Sun J., Guibas L. J.: Global intrinsic symmetries of shapes. Comput. Graph. Forum 27, 5 (2008), 1341--1348.
    [23]
    {PP93} Pinkall U., Polthier K.: Computing discrete minimal surfaces and their conjugates. Experimental Mathematics 2, 1 (1993), 15--36.
    [24]
    {PWHY09} Pottmann H., Wallner J., Huang Q.-X., Yang Y.-L.: Integral invariants for robust geometry processing. Computer Aided Geometric Design 26, 1 (2009), 37--60.
    [25]
    {Rus07} Rustamov R. M.: Laplace-Beltrami eigenfunctions for deformation invariant shape representation. In Symposium on Geometry Processing (2007), pp. 225--233.
    [26]
    {RWP06} Reuter M., Wolter F.-E., Peinecke N.: Laplace-Beltrami spectra as 'Shape-DNA' of surfaces and solids. Computer-Aided Design 38, 4 (2006), 342--366.
    [27]
    {VBMP08} Vlasic D., Baran I., Matusik W., Popović J.: Articulated mesh animation from multi-view silhouettes. ACM Trans. Graph. 27, 3 (2008), 1--9.
    [28]
    {VL77} Van Loan C.: The sensitivity of the matrix exponential. SIAM J. Numer. Anal. 14, 6 (1977).
    [29]
    {War05} Wardetzky M.: Convergence of the cotangent formula: An overview. In Discrete Differential Geometry. Birkhäuser Basel, 2005, pp. 89--112.
    [30]
    {Xu04} Xu G.: Discrete Laplace-Beltrami operators and their convergence. Comput. Aided Geom. Des. 21, 8 (2004), 767--784.

    Cited By

    View all
    • (2023)Shape Non-rigid Kinematics (SNK)Proceedings of the 37th International Conference on Neural Information Processing Systems10.5555/3666122.3669190(70012-70032)Online publication date: 10-Dec-2023
    • (2023)Stable vectorization of multiparameter persistent homology using signed barcodes as measuresProceedings of the 37th International Conference on Neural Information Processing Systems10.5555/3666122.3669109(68316-68342)Online publication date: 10-Dec-2023
    • (2023)Improving self-supervised molecular representation learning using persistent homologyProceedings of the 37th International Conference on Neural Information Processing Systems10.5555/3666122.3667597(34043-34073)Online publication date: 10-Dec-2023
    • Show More Cited By

    Recommendations

    Comments

    Information & Contributors

    Information

    Published In

    cover image Guide Proceedings
    SGP '09: Proceedings of the Symposium on Geometry Processing
    July 2009
    278 pages

    Publisher

    Eurographics Association

    Goslar, Germany

    Publication History

    Published: 15 July 2009

    Qualifiers

    • Research-article

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)0
    • Downloads (Last 6 weeks)0
    Reflects downloads up to 27 Jul 2024

    Other Metrics

    Citations

    Cited By

    View all
    • (2023)Shape Non-rigid Kinematics (SNK)Proceedings of the 37th International Conference on Neural Information Processing Systems10.5555/3666122.3669190(70012-70032)Online publication date: 10-Dec-2023
    • (2023)Stable vectorization of multiparameter persistent homology using signed barcodes as measuresProceedings of the 37th International Conference on Neural Information Processing Systems10.5555/3666122.3669109(68316-68342)Online publication date: 10-Dec-2023
    • (2023)Improving self-supervised molecular representation learning using persistent homologyProceedings of the 37th International Conference on Neural Information Processing Systems10.5555/3666122.3667597(34043-34073)Online publication date: 10-Dec-2023
    • (2023)A heat diffusion perspective on geodesic preserving dimensionality reductionProceedings of the 37th International Conference on Neural Information Processing Systems10.5555/3666122.3666428(6986-7016)Online publication date: 10-Dec-2023
    • (2023)Few-sample feature selection via feature manifold learningProceedings of the 40th International Conference on Machine Learning10.5555/3618408.3618659(6296-6319)Online publication date: 23-Jul-2023
    • (2023)TIDEProceedings of the 40th International Conference on Machine Learning10.5555/3618408.3618493(2015-2030)Online publication date: 23-Jul-2023
    • (2023)Automatic Schelling Point Detection From MeshesIEEE Transactions on Visualization and Computer Graphics10.1109/TVCG.2022.314414329:6(2926-2939)Online publication date: 1-Jun-2023
    • (2023)A Survey of Vectorization Methods in Topological Data AnalysisIEEE Transactions on Pattern Analysis and Machine Intelligence10.1109/TPAMI.2023.330839145:12(14069-14080)Online publication date: 1-Dec-2023
    • (2023)Fourier-Based and Rational Graph Filters for Spectral ProcessingIEEE Transactions on Pattern Analysis and Machine Intelligence10.1109/TPAMI.2022.317707545:6(7063-7074)Online publication date: 1-Jun-2023
    • (2022)Neural approximation of graph topological featuresProceedings of the 36th International Conference on Neural Information Processing Systems10.5555/3600270.3602687(33357-33370)Online publication date: 28-Nov-2022
    • Show More Cited By

    View Options

    View options

    Get Access

    Login options

    Media

    Figures

    Other

    Tables

    Share

    Share

    Share this Publication link

    Share on social media