Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.5555/1760037.1760044guideproceedingsArticle/Chapter ViewAbstractPublication PagesConference Proceedingsacm-pubtype
Article

The complexity of generalized satisfiability for linear temporal logic

Published: 24 March 2007 Publication History

Abstract

In a seminal paper from 1985, Sistla and Clarke showed that satisfiability for Linear Temporal Logic (LTL) is either NP-complete or PSPACE-complete, depending on the set of temporal operators used. If, in contrast, the set of propositional operators is restricted, the complexity may decrease. This paper undertakes a systematic study of satisfiability for LTL formulae over restricted sets of propositional and temporal operators. Since every propositional operator corresponds to a Boolean function, there exist infinitely many propositional operators. In order to systematically cover all possible sets of them, we use Post's lattice. With its help, we determine the computational complexity of LTL satisfiability for all combinations of temporal operators and all but two classes of propositional functions. Each of these infinitely many problems is shown to be either PSPACE-complete, NP-complete, or in P.

References

[1]
E. Böhler, N. Creignou, S. Reith, and H. Vollmer. Playing with Boolean blocks, part I: Post's lattice with applications to complexity theory. SIGACT News, 34(4):38-52, 2003.
[2]
M. Bauland, E. Hemaspaandra, H. Schnoor, and I. Schnoor. Generalized modal satisfiability. In B. Durand and W. Thomas, editors, STACS, volume 3884 of Lecture Notes in Computer Science, pages 500-511. Springer, 2006.
[3]
M. Bauland, H. Schnoor, I. Schnoor, T. Schneider, and H. Vollmer. The complexity of generalized satisfiability for linear temporal logic. Technical Report TR06-153, Electronic Colloquium on Computational Complexity, 2006.
[4]
S. A. Cook. The complexity of theorem proving procedures. In Proceedings 3rd Symposium on Theory of Computing, pages 151-158. ACM Press, 1971.
[5]
V. Dalmau. Computational Complexity of Problems over Generalized Formulas . PhD thesis, Department de Llenguatges i Sistemes Informàtica, Universitat Politécnica de Catalunya, 2000.
[6]
H. Lewis. Satisfiability problems for propositional calculi. Mathematical Systems Theory, 13:45-53, 1979.
[7]
G. Nordh. A trichotomy in the complexity of propositional circumscription. In Proceedings of the 11th International Conference on Logic for Programming , volume 3452 of Lecture Notes in Computer Science, pages 257-269. Springer Verlag, 2005.
[8]
N. Pippenger. Theories of Computability. Cambridge University Press, Cambridge, 1997.
[9]
A. Pnueli. The temporal logic of programs. In FOCS, pages 46-57. IEEE, 1977.
[10]
E. Post. The two-valued iterative systems of mathematical logic. Annals of Mathematical Studies, 5:1-122, 1941.
[11]
S. Reith. Generalized Satisfiability Problems. PhD thesis, Fachbereich Mathematik und Informatik, Universität Würzburg, 2001.
[12]
S. Reith and H. Vollmer. Optimal satisfiability for propositional calculi and constraint satisfaction problems. Information and Computation, 186(1):1- 19, 2003.
[13]
S. Reith and K. W. Wagner. The complexity of problems defined by Boolean circuits. In Proceedings International Conference Mathematical Foundation of Informatics, (MFI99); World Science Publishing, 2005.
[14]
A. Sistla and E. Clarke. The complexity of propositional linear temporal logics. Journal of the ACM, 32(3):733-749, 1985.
[15]
H. Schnoor. The complexity of the Boolean formula value problem. Technical report, Theoretical Computer Science, University of Hannover, 2005.
[16]
L. Stockmeyer. The polynomial-time hierarchy. Theoretical Computer Science , 3:1-22, 1977.

Cited By

View all
  • (2011)The tractability of model checking for LTLACM Transactions on Computational Logic (TOCL)10.1145/1877714.187771912:2(1-28)Online publication date: 27-Jan-2011
  • (2009)The Tractability of Model-checking for LTLElectronic Notes in Theoretical Computer Science (ENTCS)10.1016/j.entcs.2009.02.041231(277-292)Online publication date: 1-Mar-2009
  1. The complexity of generalized satisfiability for linear temporal logic

      Recommendations

      Comments

      Information & Contributors

      Information

      Published In

      cover image Guide Proceedings
      FOSSACS'07: Proceedings of the 10th international conference on Foundations of software science and computational structures
      March 2007
      378 pages
      • Editor:
      • Helmut Seidl

      Sponsors

      • Fundacao para a Ciencia e Tecnologia
      • TAP Air Portugal
      • Enabler
      • CISCO

      Publisher

      Springer-Verlag

      Berlin, Heidelberg

      Publication History

      Published: 24 March 2007

      Author Tags

      1. computational complexity
      2. linear temporal logic

      Qualifiers

      • Article

      Contributors

      Other Metrics

      Bibliometrics & Citations

      Bibliometrics

      Article Metrics

      • Downloads (Last 12 months)0
      • Downloads (Last 6 weeks)0
      Reflects downloads up to 06 Jan 2025

      Other Metrics

      Citations

      Cited By

      View all
      • (2011)The tractability of model checking for LTLACM Transactions on Computational Logic (TOCL)10.1145/1877714.187771912:2(1-28)Online publication date: 27-Jan-2011
      • (2009)The Tractability of Model-checking for LTLElectronic Notes in Theoretical Computer Science (ENTCS)10.1016/j.entcs.2009.02.041231(277-292)Online publication date: 1-Mar-2009

      View Options

      View options

      Media

      Figures

      Other

      Tables

      Share

      Share

      Share this Publication link

      Share on social media