Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.5555/1763852.1763854guideproceedingsArticle/Chapter ViewAbstractPublication PagesConference Proceedingsacm-pubtype
Article

Notes on triangular sets and triangulation-decomposition algorithms I: polynomial systems

Published: 12 September 2001 Publication History

Abstract

This is the first in a series of two tutorial articles devoted to triangulation-decomposition algorithms. The value of these notes resides in the uniform presentation of triangulation-decomposition of polynomial and differential radical ideals with detailed proofs of all the presented results. We emphasize the study of the mathematical objects manipulated by the algorithms and show their properties independently of those. We also detail a selection of algorithms, one for each task. We address here polynomial systems and some of the material we develop here will be used in the second part, devoted to differential systems.

References

[1]
S. A. Abramov and K. Y. Kvashenko. The greatest common divisor of polynomials that depend on a parameter. Vestnik Moskovskogo Universiteta. Seriya XV. Vychislitel' naya Matematika i Kibernetika, 2:65-71, 1993. translation in Moscow Univ. Comput. Math. Cybernet. 1993, no. 2, 59-64.
[2]
P. Aubry, D. Lazard, and M. Moreno-Maza. On the theories of triangular sets. Journal of Symbolic Computation, 28(1-2), 1999.
[3]
P. Aubry and M. Moreno-Maza. Triangular sets for solving polynomial systems: a comparative implementation of four methods. Journal of Symbolic Computation, 28(1-2):125-154, 1999.
[4]
P. Aubry, F. Rouillier, and M. Safey El Din. Real solving for positive dimensional systems. Journal of Symbolic Computation, 33(6):543-560, 2003.
[5]
P. Aubry. Ensembles triangulaires de polynomes et résolution de systèmes algébriques. Implantation en Axiom. PhD thesis, Université de Paris 6, 1999.
[6]
A. M. Bellido and V. Jalby. Spécifications des algorithmes de triangulation de systèmes algébro-élémentaires. C. R. Acad. Sci. Paris, Ser. I(334):155- 159, 2001.
[7]
D. Bouziane, A. Kandri Rody, and H. Maârouf. Unmixed-dimensional decomposition of a finitely generated perfect differential ideal. Journal of Symbolic Computation, 31(6):631-649, 2001.
[8]
F. Boulier and F. Lemaire. Computing canonical representatives of regular differential ideals. In C. Traverso, editor, ISSAC. ACM-SIGSAM, ACM, 2000.
[9]
F. Boulier, D. Lazard, F. Ollivier, and M. Petitot. Representation for the radical of a finitely generated differential ideal. In A. H. M. Levelt, editor, ISSAC'95. ACM Press, New York, 1995.
[10]
F. Boulier, D. Lazard, F. Ollivier, and M. Petitot. Computing representations for radicals of finitely generated differential ideals. Technical Report IT-306, LIFL, 1997.
[11]
T. Becker and V. Weispfenning. Gröbner Bases - A Computational Approach to Commutative Algebra. Springer-Verlag, New York, 1993.
[12]
S. C. Chou and X. S. Gao. Ritt-wu's decomposition algorithm and geometry theorem proving. In M. E. Stickel, editor, 10th International Conference on Automated Deduction, number 449 in Lecture Notes in Computer Sicences, pages 207-220. Springer-Verlag, 1990.
[13]
S. C. Chou, X. S. Gao, and J. Z. Zhang. Machine proofs in geometry. World Scientific Publishing Co. Inc., River Edge, NJ, 1994. Automated productionof readable proofs for geometry theorems, With a foreword by Robert S. Boyer.
[14]
T. Cluzeau and E. Hubert. Resolvent representation for regular differential ideals. Applicable Algebra in Engineering, Communication and Computing, 13(5):395-425, 2003.
[15]
S. C. Chou. Mechanical geometry theorem proving. D. Reidel Publishing Co., Dordrecht, 1988. With a foreword by Larry Wos.
[16]
J. Della Dora, C. Dicrescenzo, and D. Duval. About a new method for computing in algebraic number fields. In Proceedings of EUROCAL 85, number 204 in Lecture Notes in Computer Science, pages 289-290. Springer-Verlag, 1985.
[17]
S. Dellière. Triangularisation de systèmes constructibles. Application à l'évaluation dynamique. PhD thesis, Université de Limoges, 1999.
[18]
S. Dellière. D. M. Wang simple systems and dynamic constructible closure. Technical Report 16, Laboratoire d'Arithmétique, de Calcul Formel et d'Optimisation, Limoges, http://www.unilim.fr/laco, 2000.
[19]
S. Dellière. A first course to D7 with examples. www-lmc.imag.fr/lmc-cf/ Claire.Dicrescenzo/D7, 2000.
[20]
S. Dellière. Pgcd de deux polynômes à paramètres : approche par la clôture constructible dynamique et généralisationde la méthode de S. A. Abramov, K. Yu. Kvashenko. Technical Report RR-3882, INRIA, Sophia Antipolis, 2000. http://www.inria.fr/RRRT/RR-3882.html.
[21]
S. Dellière. On the links between triangular sets and dynamic constructible closure. J. Pure Appl. Algebra, 163(1):49-68, 2001.
[22]
D. Duval. Diverses questions relatives au calcul formel avec des nombres algébriques. PhD thesis, Institut Fourier, Grenoble, 1987.
[23]
D. Eisenbud. Commutative Algebra with a View toward Algebraic Geometry. Graduate Texts in Mathematics. Springer-Verlag New York, 1994.
[24]
M. V. Foursov and M. Moreno Maza. On computer-assisted classification of coupled integrable equations. In Proceedings of the 2001 international symposium on Symbolic and algebraic computation, pages 129-136. ACM Press, 2001.
[25]
X. S. Gao and S. C. Chou. Solving parametric algebraic sytems. In ISSAC 92, pages 335-341. ACM Press, New York, NY, USA, 1992.
[26]
K. O. Geddes, S. R. Czapor, and G. Labahn. Algorithms for computer algebra. Kluwer Academic Publishers, Boston, MA, 1992.
[27]
T. Gómez-Dîaz. Quelques applications de l'évaluation dynamique. PhD thesis, Université de Limoges, 1994.
[28]
E. Hubert. Factorisation free decomposition algorithms in differential algebra. Journal of Symbolic Computation, 29(4-5):641-662, 2000.
[29]
E. Hubert. Notes on triangular sets and triangulation-decomposition algorithms. II Differential systems. In this volume, 2003.
[30]
M. Kalkbrener. A generalized Euclidean algorithm for computing triangular representations of algebraic varieties. Journal of Symbolic Computation, 15(2):143-167, 1993.
[31]
M. Kalkbrener. Algorithmic properties of polynomial rings. Journal of Symbolic Computation, 26(5):525-582, November 1998.
[32]
E. R. Kolchin. Differential Algebra and Algebraic Groups, volume 54 of Pure and Applied Mathematics. Academic Press, New York-London, 1973.
[33]
D. Lazard. A new method for solving algebraic systems of positive dimension. Discrete and Applied Mathematics, 33:147-160, 1991.
[34]
D. Lazard. Solving zero dimensional algebraic systems. Journal of Symbolic Computation, 15:117-132, 1992.
[35]
H. Maârouf, A. Kandri Rody, and M. Ssafini. Triviality and dimension of a system of algebraic differential equations. Journal of Automated Reasoning, 20(3):365-385, 1998.
[36]
M. Moreno-Maza. Calculs de pgcd au-dessus des tours d'extensions simples et résolution des systèmes d'équations algébriques. PhD thesis, Université Paris 6, 1997.
[37]
M. Moreno Maza and R. Rioboo. Polynomial gcd computations over towers of algebraic extensions. In Applied algebra, algebraic algorithms and error-correcting codes (Paris, 1995), pages 365-382. Springer, Berlin, 1995.
[38]
S. Morrison. The differential ideal {P}:M. Journal of Symbolic Computation, 28(4-5):631-656, 1999.
[39]
D. Richardson. Weak Wu stratification in R n . Journal of Symbolic Computation, 28(1-2):213-223, 1999. Polynomial elimination--algorithms and applications.
[40]
J. F. Ritt. Manifolds of functions defined by systems of algebraic differential equations. Transaction of the American Mathematical Society, 32:569-598, 1930.
[41]
J. F. Ritt. Differential Equations from the Algebraic Standpoint. Amer. Math. Soc. Colloq. Publ., 1932.
[42]
J. F. Ritt. Differential Algebra, volume XXXIII of Colloquium publications. American Mathematical Society, 1950. Reprinted by Dover Publications, Inc (1966).
[43]
E. Schost. Sur la résolution des systèmes polynomiaux à paramètres. PhD thesis, École polytechnique, 2000.
[44]
J. Schicho and Z. Li. A construction of radical ideals in polynomial algebra. Technical Report 98-17, RISC-Linz, 1998. ftp://ftp.risc. uni-linz.ac.at/pub/techreports/1998/98-17.ps.gz.
[45]
A. Szanto. Computation with polynomial systems. PhD thesis, Cornell University, 1998.
[46]
W. V. Vasconcelos. Computational Methods in Commutative Algebra and Algebraic Geometry, volume 2 of Algorithms and Computation in Mathematics. Springer, Berlin, 1998.
[47]
J. von zur Gathen and J. Gerhard. Modern computer algebra. Cambridge University Press, New York, 1999.
[48]
D. Wang. An elimination method for polynomial systems. Journal of Symbolic Computation, 16(2):83-114, August 1993.
[49]
D. Wang. Decomposing polynomial systems into simple systems. Journal of Symbolic Computation, 25(3):295-314, 1998.
[50]
D. Wang. Elimination methods. Texts and Monographs in Symbolic Computation. Springer-Verlag Wien, 1999.
[51]
D. Wang. Computing triangular systems and regular systems. Journal of Symbolic Computation, 30(2):221-236, 2000.
[52]
W. T. Wu. On the decision problem and the mechanization of theorem-proving in elementary geometry. Sci. Sinica, 21(2):159-172, 1978.
[53]
W. T. Wu. Mechanical theorem proving in geometries. Springer-Verlag, Vienna, 1994. Basic principles, Translated from the 1984 Chinese original by Xiao Fan Jin and Dong Ming Wang.
[54]
W. T. Wu. Mathematics mechanization. Kluwer Academic Publishers Group, Dordrecht, 2000. Mechanical geometry theorem-proving, mechanical geometry problem-solving and polynomial equations-solving.

Cited By

View all
  • (2018)Irredundant Triangular DecompositionProceedings of the 2018 ACM International Symposium on Symbolic and Algebraic Computation10.1145/3208976.3208996(311-318)Online publication date: 11-Jul-2018
  • (2017)Gcd Modulo a Primary Triangular Set of Dimension ZeroProceedings of the 2017 ACM International Symposium on Symbolic and Algebraic Computation10.1145/3087604.3087612(109-116)Online publication date: 23-Jul-2017
  • (2016)Formal Algorithmic Elimination for PDEsProceedings of the 2016 ACM International Symposium on Symbolic and Algebraic Computation10.1145/2930889.2930941(19-22)Online publication date: 20-Jul-2016
  • Show More Cited By

Recommendations

Comments

Information & Contributors

Information

Published In

cover image Guide Proceedings
SNSC'01: Proceedings of the 2nd international conference on Symbolic and numerical scientific computation
September 2001
387 pages
ISBN:3540405542
  • Editors:
  • Franz Winkler,
  • Ulrich Langer

Publisher

Springer-Verlag

Berlin, Heidelberg

Publication History

Published: 12 September 2001

Qualifiers

  • Article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 18 Feb 2025

Other Metrics

Citations

Cited By

View all
  • (2018)Irredundant Triangular DecompositionProceedings of the 2018 ACM International Symposium on Symbolic and Algebraic Computation10.1145/3208976.3208996(311-318)Online publication date: 11-Jul-2018
  • (2017)Gcd Modulo a Primary Triangular Set of Dimension ZeroProceedings of the 2017 ACM International Symposium on Symbolic and Algebraic Computation10.1145/3087604.3087612(109-116)Online publication date: 23-Jul-2017
  • (2016)Formal Algorithmic Elimination for PDEsProceedings of the 2016 ACM International Symposium on Symbolic and Algebraic Computation10.1145/2930889.2930941(19-22)Online publication date: 20-Jul-2016
  • (2011)An algorithm for computing set-theoretic generators of an algebraic varietyProceedings of the 36th international symposium on Symbolic and algebraic computation10.1145/1993886.1993911(139-146)Online publication date: 8-Jun-2011
  • (2011)Almost linear time operations with triangular setsACM Communications in Computer Algebra10.1145/1940475.194048644:3/4(103-104)Online publication date: 28-Jan-2011
  • (2010)Thomas decomposition of algebraic and differential systemsProceedings of the 12th international conference on Computer algebra in scientific computing10.5555/1893832.1893836(31-54)Online publication date: 6-Sep-2010
  • (2009)Computing cylindrical algebraic decomposition via triangular decompositionProceedings of the 2009 international symposium on Symbolic and algebraic computation10.1145/1576702.1576718(95-102)Online publication date: 28-Jul-2009
  • (2009)Algebraic transformation of differential characteristic decompositions from one ranking to anotherJournal of Symbolic Computation10.1016/j.jsc.2008.07.00244:4(333-357)Online publication date: 1-Apr-2009
  • (2008)When does (T) equal sat(T)?Proceedings of the twenty-first international symposium on Symbolic and algebraic computation10.1145/1390768.1390798(207-214)Online publication date: 20-Jul-2008
  • (2008)Universal characteristic decomposition of radical differential idealsJournal of Symbolic Computation10.1016/j.jsc.2007.08.00343:1(27-45)Online publication date: 1-Jan-2008
  • Show More Cited By

View Options

View options

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media