Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.5555/1763974.1764064guideproceedingsArticle/Chapter ViewAbstractPublication PagesConference Proceedingsacm-pubtype
Article

Segmentation of laparoscopic images for computer assisted surgery

Published: 29 June 2003 Publication History

Abstract

This paper presents a learning-based approach to the problem of segmentation of laparoscopic images. The first step of the proposed method is to preprocess input images with a homomorphic filter. An initial segmentation map is then computed using a region growing based image segmentation algorithm. The obtained regions are finally classified using a support vector machine (SVM) to produce the final segmentation. The preliminary results computed on two image sets were promising. The first set includes laparoscopic imugvs recorded in a controlled environment. The second set includes laparoscopic images recorded during three disk removal surgeries performed laparoscopically at Sainte-Justine Hospital.

References

[1]
Kuhnapfel, U., Cakmak, H., Maass, H.: Endoscopic surgery training using virtual reality and deformable tissue simulation. Computers & Graphics UK 24 (2000) 671-682.
[2]
Cotin, S., Delingette, H., Anache, N.: Real-time elastic deformations of soft tissues for surgery simulation stéphane cotin, hervé delingette: and nicholas ayache. IEEE Trans. on Visualization and Computer Graphics 5 (1999) 62-73.
[3]
Basdogan, C., Ho, C., Srinivasan, M.: Simulation of tissue cutting and bleeding for laparoscopic surgery using auxiliary surfaces. In: Proc. Medicine Meets Virtual Reality IOS Press (1999) 38-44.
[4]
Dey, D., Gobbi, D., Slomka, P., Surry K., Peter, T.: Automatic fusion of freehand endoscopic brain images to threedimensional surfaces: Creating stereoscopic panoramas. IEEE Trans. on Medical Imaging 21 (2002) 23-30.
[5]
Bricault, I., Ferretti, G., Cinquin, P.: Registration of real and ct-derived virtual bronchoscopic images to assist transbronchial biopsy. IEEE Trans. on Medical Imaging 17 (2002) 703-714.
[6]
Lunn, K., Hartov, A., Roberts, D., Sun, H., Paulsen, K.: Extracting displacement data from coregistered ultrasound for brain modeling. In: Proc. of the SPIE Medical Imaging. (2002).
[7]
Wei, G., Arbter, K., Hirzinger, G.: Real-time visual servoing for laparoscopic surgery, controlling robot motion with color image segmentation. IEEE Engineering in Medicine and Biology Magazine 16 (1997) 40-45.
[8]
Zhang, X., Payandeh, S.: Application of visual tracking ibr robot-assisted laparoscopic surgery. Journal of Robotic Systems 19 (2002) 315-328.
[9]
Gonzalez, R., Woods, R.: Digital Image Processing. Prentice Hall (2002).
[10]
Caselles, V., Kimmel, R., Sapiro, G.: Geodesic active contours. International Journal of Computer Vision 22 (1997) 61-79.
[11]
Deng, Y., Manjunath, B.: Unsupervised segmentation of color-texture regions in images aatd video. IEEE Trans. on Pattern Analysis and Machine Intelligence 23 (2001) 800-810.
[12]
Vapnik, V.: The Nature of Statistical Learning Theory. Springer-Verlag (1995).
[13]
Chapelle, O., Haffner, P., Vapnick, V.: Support vector machines for histogram-based classification. IEEE Trans. on Neural Networks 10 (1995) 1055-1064.
[14]
Tsutsumi, F., Nakajima, C.: Hybrid approach of video indexing and machine learning for rapid indexing and highly precise object recognition. In: Proc. ICIP. Volume 2. (2001) 645-648.
[15]
Hu, M.K.: Visual pattern recogidtion by moment invariants. IRE Trans. Information Theory 8 (1962) 179-187.
[16]
Bertalmio, M., Sapiro, G., Caselles, V., Ballester, C.: Image inpainting. In: Sig-graph 2000, Computer Graphics Proceedings, ACM Press/ACM SIGGRAPH/ Addison Wesley Longman (2000) 417-424.
[17]
Ballester, C., Bertalmio, M., Caselles, V., Sapiro, G., Verdera, J.: Filling-in by joint interpolation of vector fields and grey levds. IEEE Trans. on Image Processing 10 (2000) 1200-1211.
  1. Segmentation of laparoscopic images for computer assisted surgery

    Recommendations

    Comments

    Information & Contributors

    Information

    Published In

    cover image Guide Proceedings
    SCIA'03: Proceedings of the 13th Scandinavian conference on Image analysis
    June 2003
    1173 pages
    ISBN:3540406018
    • Editors:
    • Josef Bigun,
    • Tomas Gustavsson

    Sponsors

    • IAPR: International Association for Pattern Recognition
    • SSBA: Swedish Society for Automated Image Analysis

    Publisher

    Springer-Verlag

    Berlin, Heidelberg

    Publication History

    Published: 29 June 2003

    Qualifiers

    • Article

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • 0
      Total Citations
    • 0
      Total Downloads
    • Downloads (Last 12 months)0
    • Downloads (Last 6 weeks)0
    Reflects downloads up to 28 Jan 2025

    Other Metrics

    Citations

    View Options

    View options

    Figures

    Tables

    Media

    Share

    Share

    Share this Publication link

    Share on social media