Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.5555/1775059.1775097guideproceedingsArticle/Chapter ViewAbstractPublication PagesConference Proceedingsacm-pubtype
Article

High-performance graph algorithms from parallel sparse matrices

Published: 18 June 2006 Publication History

Abstract

Large-scale computation on graphs and other discrete structures is becoming increasingly important in many applications, including computational biology, web search, and knowledge discovery. High-performance combinatorial computing is an infant field, in sharp contrast with numerical scientific computing.
We argue that many of the tools of high-performance numerical computing - in particular, parallel algorithms and data structures for computation with sparse matrices - can form the nucleus of a robust infrastructure for parallel computing on graphs. We demonstrate this with an implementation of a graph analysis benchmark using the sparse matrix infrastructure in Star-P, our parallel dialect of the MATLAB programming language.

References

[1]
Bader, D.A., Madduri, K., Gilbert, J.R., Shah, V., Kepner, J., Meuse, T., Krishnamurthy, A.: Designing scalable synthetic compact applications for benchmarking high productivity computing systems. Cyberinfrastructure Technology Watch, 2(4B) (November 2006).
[2]
Bailey, D.H., Barszcz, E., Barton, J.T., Browning, D.S., Carter, R.L., Dagum, D., Fatoohi, R.A., Frederickson, P.O., Lasinski, T.A., Schreiber, R.S., Simon, H.D., Venkatakrishnan, V., Weeratunga, S.K.: The NAS parallel benchmarks. The International Journal of Supercomputer Applications 5(3), 63-73 (1991).
[3]
DeLano, W.L.: The PyMOL molecular graphics system, DeLano Scientific LLC, San Carlos, CA, USA (2006), http://www.pymol.org/
[4]
Dongarra, J.J.: Performance of various computers using standard linear equations software in a Fortran environment. In: Karplus, W.J. (ed.) Multiprocessors and array processors: proceedings of the Third Conference on Multiprocessors and Array Processors, San Diego, CA, USA, January 14-16, 1987. pp. 15-32, Society for Computer Simulation (1987).
[5]
Gilbert, J.R., Moler, C., Schreiber, R.: Sparse matrices in MATLAB: Design and implementation. SIAM J. on Matrix Anal. Appl. 13(1), 333-356 (1992).
[6]
Husbands, P., Isbell, C.: MATLAB*P: A tool for interactive supercomputing. In: SIAM Conference on Parallel Processing for Scientific Computing (1999).
[7]
Luby, M.: A simple parallel algorithm for the maximal independent set problem. SIAM J. Comput. 15(4), 1036-1053 (1986).
[8]
Moler, C.B.: Parallel matlab. In: Householder Symposium on Numerical Algebra (2005).
[9]
Robertson, C.: Sparse parallel matrix multiplication. M.S. Project, Department of Computer Science, UCSB (2005).
[10]
Shah, V., Gilbert, J.R.: Sparse matrices in Matlab*P: Design and implementation. In: Bougé, L., Prasanna, V.K. (eds.) HiPC 2004. LNCS, vol. 3296, pp. 144-155. Springer, Heidelberg (2004).
[11]
Travinin, N., Kepner, J.: pMatlab parallel matlab library. International Journal of High Performance Computing Applications 2006 (submitted).

Cited By

View all
  • (2022)Exploring the Use of Novel Spatial Accelerators in Scientific ApplicationsProceedings of the 2022 ACM/SPEC on International Conference on Performance Engineering10.1145/3489525.3511690(47-58)Online publication date: 9-Apr-2022
  • (2018)High-Performance Sparse Matrix-Matrix Products on Intel KNL and Multicore ArchitecturesWorkshop Proceedings of the 47th International Conference on Parallel Processing10.1145/3229710.3229720(1-10)Online publication date: 13-Aug-2018
  • (2018)Implementing Push-Pull Efficiently in GraphBLASProceedings of the 47th International Conference on Parallel Processing10.1145/3225058.3225122(1-11)Online publication date: 13-Aug-2018
  • Show More Cited By
  1. High-performance graph algorithms from parallel sparse matrices

    Recommendations

    Comments

    Information & Contributors

    Information

    Published In

    cover image Guide Proceedings
    PARA'06: Proceedings of the 8th international conference on Applied parallel computing: state of the art in scientific computing
    June 2006
    1191 pages
    ISBN:3540757546
    • Editors:
    • Bo Kågström,
    • Erik Elmroth,
    • Jack Dongarra,
    • Jerzy Waśniewski

    Sponsors

    • Umeå University
    • VR: The Swedish Research Council

    Publisher

    Springer-Verlag

    Berlin, Heidelberg

    Publication History

    Published: 18 June 2006

    Qualifiers

    • Article

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)0
    • Downloads (Last 6 weeks)0
    Reflects downloads up to 12 Jan 2025

    Other Metrics

    Citations

    Cited By

    View all
    • (2022)Exploring the Use of Novel Spatial Accelerators in Scientific ApplicationsProceedings of the 2022 ACM/SPEC on International Conference on Performance Engineering10.1145/3489525.3511690(47-58)Online publication date: 9-Apr-2022
    • (2018)High-Performance Sparse Matrix-Matrix Products on Intel KNL and Multicore ArchitecturesWorkshop Proceedings of the 47th International Conference on Parallel Processing10.1145/3229710.3229720(1-10)Online publication date: 13-Aug-2018
    • (2018)Implementing Push-Pull Efficiently in GraphBLASProceedings of the 47th International Conference on Parallel Processing10.1145/3225058.3225122(1-11)Online publication date: 13-Aug-2018
    • (2018)Bandwidth Reduced Parallel SpMV on the SW26010 Many-Core PlatformProceedings of the 47th International Conference on Parallel Processing10.1145/3225058.3225074(1-10)Online publication date: 13-Aug-2018
    • (2017)On improving performance of sparse matrix-matrix multiplication on GPUsProceedings of the International Conference on Supercomputing10.1145/3079079.3079106(1-11)Online publication date: 14-Jun-2017
    • (2016)Balanced Hashing and Efficient GPU Sparse General Matrix-Matrix MultiplicationProceedings of the 2016 International Conference on Supercomputing10.1145/2925426.2926273(1-12)Online publication date: 1-Jun-2016
    • (2014)Efficient sparse matrix-vector multiplication on GPUs using the CSR storage formatProceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis10.1109/SC.2014.68(769-780)Online publication date: 16-Nov-2014
    • (2014)A caching approach to reduce communication in graph search algorithmsProceedings of the 2014 International Workshop on Data Intensive Scalable Computing Systems10.1109/DISCS.2014.8(65-72)Online publication date: 16-Nov-2014
    • (2013)Massive data analyticsIBM Journal of Research and Development10.1147/JRD.2012.223241457:1(111-121)Online publication date: 1-Jan-2013
    • (2013)Graph models and their efficient implementation for sparse Jacobian matrix determinationDiscrete Applied Mathematics10.1016/j.dam.2012.12.010161:12(1747-1754)Online publication date: 1-Aug-2013
    • Show More Cited By

    View Options

    View options

    Media

    Figures

    Other

    Tables

    Share

    Share

    Share this Publication link

    Share on social media