Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.5555/1782174.1782213guideproceedingsArticle/Chapter ViewAbstractPublication PagesConference Proceedingsacm-pubtype
Article

An energy-aware gradient-based scheduling heuristic for heterogeneous multiprocessor embedded systems

Published: 18 December 2007 Publication History

Abstract

In this paper, we propose a heuristic static energy-aware scheduling algorithm for scheduling tasks with precedence constraints on a heterogeneous multiprocessor embedded system consisting of processing elements equipped with dynamic voltage scaling capabilities. While most energy-aware scheduling algorithms in the literature assume that the mapping of the tasks to the processors is known and consider only task ordering and voltage scaling, our algorithm takes into consideration all three factors using the concept of energy gradient. Higher values of energy gradient result in larger reduction in the energy consumption together with smaller increase in the makespan of the schedules. We compare our algorithm to a genetic algorithm in the literature and show that although our algorithm does not consider intra-task voltage scaling, it still provides an average energy savings of about 4% while reducing the optimization time by more than 93%. These energy savings are more significant for larger task graphs.

References

[1]
Han, J., Li, Q.: Dynamic Power-Aware Scheduling Algorithms for Real-Time Task Sets with Fault-Tolerance in Parallel and Distributed Computing Environment. In: Proc. IPDPS (April 2005).
[2]
AlEnawy, T.A., Aydin, H.: Energy-Aware Task Allocation for Rate Monotonic Scheduling. In: Proc. RTAS, pp. 213-223 (March 2005).
[3]
Gorji-Ara, B., Chou, P., Bagherzadeh, N., Reshadi, M., Jensen, D.: Fast and Efficient Voltage Scheduling by Evolutionary Slack Distribution. In: Proc. ASP-DAC, pp. 659-662 (January 2004).
[4]
Zhu, D., Melhem, R.G., Childers, B.R.: Scheduling with Dynamic Voltage/Speed Adjustment Using Slack Reclamation in Multiprocessor Real-Time Systems. IEEE Trans. Parallel and Distributed Systems 14(7), 686-700 (2003).
[5]
Aydin, H., Yang, Q.: Energy-Aware Partitioning for Multiprocessor Real-Time Systems. In: Proc. IPDPS (April 2003).
[6]
Mishra, R., Rastogi, N., Zhu, D., Mossé, D., Melhem, R.G.: Energy Aware Scheduling for Distributed Real-Time Systems. In: Proc. IPDPS (April 2003).
[7]
Yu, Y., Prasanna, V.K.: Power-Aware Resource Allocation for Independent Tasks in Heterogeneous Real-Time Systems. In: Proc. ICPADS, pp. 341-348 (December 2002).
[8]
Zhu, D., AbouGhazaleh, N., Mossé, D., Melhem, R.G.: Power Aware Scheduling for AND/OR Graphs in Multi-Processor Real-Time Systems. In: Proc. ICPP, pp. 593-601 (August 2002).
[9]
Schmitz, M.T., Al-Hashimi, B.M., Eles, P.: Energy-Efficient Mapping and Scheduling for DVS Enabled Distributed Embedded Systems. In: Proc. DATE, pp. 514-521 (March 2002).
[10]
Aydin, H., Mejía-Alvarez, P., Mossé, D., Melhem, R.G.: Dynamic and Aggressive Scheduling Techniques for Power-Aware Real-Time Systems. In: Proc. RTSS, pp. 95-105 (December 2001).
[11]
Schmitz, M.T., Al-Hashimi, B.M.: Considering Power Variations of DVS Processing Elements for Energy Minimisation in Distributed Systems. In: Proc. ISSS, pp. 250- 255 (October 2001).
[12]
Gruian, F.: Hard Real-Time Scheduling for Low-Energy Using Stochastic Data and DVS Processors. In: Proc. ISLPED, pp. 46-51 (August 2001).
[13]
Bhamba, N.K., Bhattacharyya, S.S., Teich, J., Zitzler, E.: Hybrid Global/Local Search Strategies for Dynamic Voltage Scaling in Embedded Multiprocassors. In: Proc. CODES, pp. 243-248 (April 2001).
[14]
Shin, D., Kim, J., Lee, S.: Intra-Task Voltage Scheduling for Low-Energy Hard Real-Time Applications. IEEE Design and Test of Computers 18(2), 20-30 (2001).
[15]
Gruian, F., Kuchcinski, K.: LEneS: Task Scheduling for Low-Energy Systems Using Variable Supply Voltage Processors. In: Proc. ASP-DAC, pp. 449-455 (2001).
[16]
Luo, J., Jha, N.K.: Power-conscious Joint Scheduling of Periodic Task Graphs and Aperiodic Tasks in Distributed Real-time Embedded Systems. In: Proc. ICCAD, pp. 357-364 (November 2000).
[17]
Ali, S., Siegel, H.J., Maheswaran, M., Hensgen, D.A., Ali, S.: Task Execution Time Modeling for Heterogeneous Computing Systems. In: Proc. HCW, pp. 185-199 (May 2000).
[18]
Ishihara, T., Yasuura, H.: Voltage Scheduling Problem for Dynamically Variable Voltage Processors. In: Proc. ISLPED, pp. 197-202 (August 1998).
[19]
Dick, R.P., Rhodes, D.L., Wolf, W.: TGFF: Task Graphs for Free. In: Proc. CODES, pp. 97-101 (March 1998).
[20]
Chandrakasan, A.P., Sheng, S., Brodersen, R.W.: Low-Power CMOS Digital Design. IEEE Journal of Solid-State Circuits 27(4), 473-484 (1992).
[21]
Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the theory of NP-Completeness, San Francisco, CA. W. H. Freeman and Company, New York (1979).

Recommendations

Comments

Information & Contributors

Information

Published In

cover image Guide Proceedings
HiPC'07: Proceedings of the 14th international conference on High performance computing
December 2007
663 pages
ISBN:3540772197
  • Editors:
  • Srinivas Aluru,
  • Manish Parashar,
  • Ramamurthy Badrinath,
  • Viktor K. Prasanna

Sponsors

  • Google Inc.
  • Infosys
  • Intel: Intel
  • Yahoo!
  • IBM: IBM

Publisher

Springer-Verlag

Berlin, Heidelberg

Publication History

Published: 18 December 2007

Author Tags

  1. dynamic voltage scaling
  2. embedded systems
  3. energy-aware scheduling
  4. heterogeneous multiprocessor
  5. power management

Qualifiers

  • Article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • 0
    Total Citations
  • 1
    Total Downloads
  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 24 Jan 2025

Other Metrics

Citations

View Options

View options

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media