Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.5555/1783034.1783037guideproceedingsArticle/Chapter ViewAbstractPublication PagesConference Proceedingsacm-pubtype
Article

A systems theoretic approach to the design of scalable cryptographic hash functions

Published: 12 February 2007 Publication History
  • Get Citation Alerts
  • Abstract

    Cryptographic hash functions are security primitives that compute check sums of messages in a strong manner and this way are of fundamental importance for ensuring integrity and authenticity in secure communications. However, recent developments in cryptanalysis indicate that conventional approaches to the design of cryptographic hash functions may have some shortcomings.
    Therefore it is the intention of this contribution to propose a novel way how to design cryptographic hash functions. Our approach is based on the idea that the hash value of a message is computed as a message-dependent permutation generated by very special chaotic permutation systems, so called Kolomogorov systems. Following this systems theoretic approach we obtain arguably strong hash functions with the additional useful property of excellent scalability.

    References

    [1]
    Aigner, M.: Kombinatorik. Springer, Heidelberg (1975).
    [2]
    Arnold, V.I., Avez, A.: Ergodic Problems of Classical Mechanics. W.A. Benjamin, New York (1968).
    [3]
    Goldstein, S., Misra, B., Courbage, M.: On intrinsic randomness of dynamical systems. Journal of Statistical Physics 25(1), 111-126 (1981).
    [4]
    Golomb, S.W.: Shift Register Sequences. Aegan Park Pr., Laguna Hills, CA (1981).
    [5]
    Knuth, D.E.: The Art of Computer Programming. Addison-Wesley, London, UK (1998).
    [6]
    Moser, J.: Stable and Random Motions in Dynamical Systems. Princeton University Press, Princeton (1973).
    [7]
    NIST. Keyed-Hash Message Authentication Code (HMAC). FIPS 198 (March 2002).
    [8]
    NIST. Secure hash standard (SHS). FIPS 180-2 (August 2002).
    [9]
    Rivest, R.L.: The MD5 message digest function. RFC 1321 (1992).
    [10]
    Scharinger, J.: An excellent permutation operator for cryptographic applications. In: Moreno Díaz, R., Pichler, F., Quesada Arencibia, A. (eds.) EUROCAST 2005. LNCS, vol. 3643, pp. 317-326. Springer, Heidelberg (2005).
    [11]
    Schneier, B.: Applied Cryptography. Addison-Wesley, London, UK (1996).
    [12]
    Shannon, C.E.: Communication theory of secure systems. Bell System Technical Journal 28(4), 656-715 (1949).
    [13]
    Shields, P.: The Theory of Bernoulli Shifts. The University of Chicago Press, Chicago (1973).
    [14]
    Wang, X., Yin, Y.L., Yu, H.: Finding collisions in the full SHA-1. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, Springer, Heidelberg (2005).

    Recommendations

    Comments

    Information & Contributors

    Information

    Published In

    cover image Guide Proceedings
    EUROCAST'07: Proceedings of the 11th international conference on Computer aided systems theory
    February 2007
    1233 pages
    ISBN:3540758666
    • Editors:
    • Roberto Moreno Díaz,
    • Franz Pichler,
    • Alexis Quesada Arencibi

    Publisher

    Springer-Verlag

    Berlin, Heidelberg

    Publication History

    Published: 12 February 2007

    Qualifiers

    • Article

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • 0
      Total Citations
    • 1
      Total Downloads
    • Downloads (Last 12 months)0
    • Downloads (Last 6 weeks)0
    Reflects downloads up to 12 Aug 2024

    Other Metrics

    Citations

    View Options

    View options

    Get Access

    Login options

    Media

    Figures

    Other

    Tables

    Share

    Share

    Share this Publication link

    Share on social media