Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.5555/1786194.1786273guideproceedingsArticle/Chapter ViewAbstractPublication PagesConference Proceedingsacm-pubtype
Article

Evaluating linear recursive filters using novel data formats for dense matrices

Published: 09 September 2007 Publication History

Abstract

The aim of this contribution is to show that the performance of the recently developed high performance algorithm for evaluating linear recursive filters can be increased by using new generalized data structures for dense matrices introduced by F. G. Gustavson. The new implementation is based on vectorized algorithms for banded triangular Toeplitz matrix - vector multiplication and the algorithm for solving linear recurrence systems with constant coefficients. The results of experiments performed on Intel Itanium 2 and Cray X1 are also presented and discussed.

References

[1]
Bario, R., Melendo, B., Serrano, S.: On the numerical evaluation of linear recurrences. J. Comput. Appl. Math. 150, 71-86 (2003).
[2]
Blelloch, G., Chatterjee, S., Zagha, M.: Solving linear recurrences with loop raking. Journal of Parallel and Distributed Computing 25, 91-97 (1995).
[3]
Chandra, R., Dagum, L., Kohr, D., Maydan, D., McDonald, J., Menon, R.: Parallel Programming in OpenMP. Morgan Kaufmann Publishers, San Francisco (2001).
[4]
Dongarra, J., Duff, I., Sorensen, D., Van der Vorst, H.: Solving Linear Systems on Vector and Shared Memory Computers. SIAM, Philadelphia (1991).
[5]
Dongarra, J., Hammarling, S., Sorensen, D.: Block reduction of matrices to condensed form for eigenvalue computations. J. Comp. Appl. Math 27, 215-227 (1989).
[6]
Gustavson, F.G.: New generalized data structures for matrices lead to a variety of high performance algorithms. In: Wyrzykowski, R., Dongarra, J., Paprzycki, M., Wasniewski, J. (eds.) PPAM 2001. LNCS, vol. 2328, pp. 418-436. Springer, Heidelberg (2002).
[7]
Gustavson, F.G.: High-performance linear algebra algorithms using new generalized data structures for matrices. IBM J. Res. Dev. 47, 31-56 (2003).
[8]
Larriba-Pey, J.L., Navarro, J.J., Jorba, A., Roig, O.: Review of general and Toeplitz vector bidiagonal solvers. Parallel Comput. 22, 1091-1125 (1996).
[9]
Netwok Computer Services Inc.: The AHPCRC Cray X1 primer, http://www.ahpcrc.org/publications/Primer.pdf
[10]
Paprzycki, M., Stpiczynski, P.: Solving linear recurrence systems on the Cray YMP. In: Wasniewski, J., Dongarra, J. (eds.) PARA 1994. LNCS, vol. 879, pp. 416-424. Springer, Heidelberg (1994).
[11]
Paprzycki, M., Stpiczynski, P.: Parallel solution of linear recurrence systems. Z. Angew. Math. Mech. 76, 5-8 (1996).
[12]
Parhi, K.K., Messerschmitt, D.: Pipeline interleaving and parallelism in recursive digital filters, part ii: Pipelined incremental block filtering. IEEE Trans. Acoust., Speech Signal Processing ASSP-37, 1118-1135 (1989).
[13]
Robelly, J.P., Cichon, G., Seidel, H., Fettweis, G.: Implementation of recursive digital filters into vector SIMD DSP architectures. In: Proc. International Conference on Acoustics, Speech and Signal Processing. ICASSP 2004, Montreal, Canada, May 17-21 (2004).
[14]
Smith, S.W.: The Scientist and Engineer's Guide to Digital Signal Processing. California Technical Publishing, San Diego (1997).
[15]
Stpiczynski, P.: Parallel algorithms for solving linear recurrence systems. In: Bougé, L., Robert, Y., Trystram, D., Cosnard, M. (eds.) CONPAR 1992 and VAPP 1992. LNCS, vol. 634, pp. 343-348. Springer, Heidelberg (1992).
[16]
Stpiczynski, P.: Solving linear recurrence systems using level 2 and 3 BLAS routines. In: Wyrzykowski, R., Dongarra, J., Paprzycki, M., Wasniewski, J. (eds.) PPAM 2004. LNCS, vol. 3019, pp. 1059-1066. Springer, Heidelberg (2004).
[17]
Stpiczynski, P.: Evaluating recursive filters on distributed memory parallel computers. Comm. Numer. Meth. Engng. 22, 1087-1095 (2006).
[18]
Stpiczynski, P., Paprzycki, M.: Fully vectorized solver for linear recurrence systems with constant coefficients. In: Palma, J.M.L.M., Dongarra, J., Hernández, V. (eds.) VECPAR 2000. LNCS, vol. 1981, pp. 541-551. Springer, Heidelberg (2001).
[19]
van der Vorst, H., Dekker, K.: Vectorization of linear recurrence relations. SIAM J. Sci. Stat. Comput. 10, 27-35 (1989).

Recommendations

Comments

Information & Contributors

Information

Published In

cover image Guide Proceedings
PPAM'07: Proceedings of the 7th international conference on Parallel processing and applied mathematics
September 2007
1413 pages
ISBN:3540681051
  • Editors:
  • Roman Wyrzykowski,
  • Konrad Karczewski,
  • Jack Dongarra,
  • Jerzy Wasniewski

Sponsors

  • Microsoft Corp.
  • Intel: Intel
  • Action S.A.
  • SIAM: Society for Industrial and Applied Mathematics
  • IBM Corporation

Publisher

Springer-Verlag

Berlin, Heidelberg

Publication History

Published: 09 September 2007

Qualifiers

  • Article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • 0
    Total Citations
  • 1
    Total Downloads
  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 07 Nov 2024

Other Metrics

Citations

View Options

View options

Get Access

Login options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media