A hybrid denotational semantics for hybrid systems
Abstract
In this article, we present a model and a denotational semantics for hybrid systems. Our model is designed to be used for the verification of large, existing embedded applications. The discrete part is modeled by a program written in an extension of an imperative language and the continuous part is modeled by differential equations. We give a denotational semantics to the continuous system inspired by what is usually done for the semantics of computer programs and then we show how it merges into the semantics of the whole system. The semantics of the continuous system is computed as the fix-point of a modified Picard operator which increases the information content at each step.
References
[1]
Alur, R., Grosu, R., Hur, Y., Kumar, V., Lee, I.: Modular specification of hybrid systems in charon. In: Lynch, N.A., Krogh, B.H. (eds.) HSCC 2000. LNCS, vol. 1790, Springer, Heidelberg (2000).
[2]
Berdine, J., Chawdhary, A., Cook, B., Distefano, D., O'Hearn, P.: Variance analyses from invariance analyses. In: POPL, pp. 211-224 (2007).
[3]
Bouissou, O., Martel, M.: A hybrid denotational semantics of hybrid systems - extended version, http://hal.archives-ouvertes.fr/hal-00177031/
[4]
Bouissou, O., Martel, M.: GRKLib: a guaranteed runge-kutta library. In: International Symposium on Scientific Computing, Computer Arithmetic and Validated Numerics, IEEE, Los Alamitos (2006).
[5]
Cousot, P.: Integrating physical systems in the static analysis of embedded control software. In: Yi, K. (ed.) APLAS 2005. LNCS, vol. 3780, pp. 135-138. Springer, Heidelberg (2005).
[6]
Cousot, P., Cousot, R.: Abstract interpretation: a unified lattice model for static analysis of programs by construction or approximation of fixpoints. In: POPL, pp. 238-252. ACM Press, New York (1977).
[7]
Cousot, P., Cousot, R., Feret, J., Mauborgne, L., Monniaux, A.M.D., Rival, X.: The ASTREÉ analyzer. In: Sagiv, M. (ed.) ESOP 2005. LNCS, vol. 3444, Springer, Heidelberg (2005).
[8]
Cuijpers, P., Reniers, M.: Hybrid process algebra. Journal of Logic and Algebraic Programming 62(2), 191-245 (2005).
[9]
Edalat, A., Lieutier, A.: Domain theory and differential calculus. Mathematical Structures in Computer Science 14(6), 771-802 (2002).
[10]
Edalat, A., Lieutier, A., Pattinson, D.: A computational model for multivariable differential calculus. In: Sassone, V. (ed.) FOSSACS 2005. LNCS, vol. 3441, Springer, Heidelberg (2005).
[11]
Edalat, A., Pattinson, D.: Denotational Semantics of Hybrid Automata. In: Aceto, L., Ingólfsdóttir, A. (eds.) FOSSACS 2006 and ETAPS 2006. LNCS, vol. 3921, pp. 231-245. Springer, Heidelberg (2006).
[12]
Alur, R., et al.: The algorithmic analysis of hybrid systems. Theoretical Computer Science 138(1), 3-34 (1995).
[13]
Goubault, E., Martel, M., Putot, S.: Asserting the precision of floating-point computations: A simple abstract interpreter. In: Le Métayer, D. (ed.) ESOP 2002. LNCS, vol. 2305, pp. 209-212. Springer, Heidelberg (2002).
[14]
Goubault, E., Martel, M., Putot, S.: Some future challenges in the validation of control systems. In: ERTS (2006).
[15]
Gupta, V., Jagadeesan, R., Saraswat, V.: Computing with continuous change. Science of Computer Programming 30(1-2), 3-49 (1998).
[16]
Henzinger, T.A.: The theory of hybrid automata. In: Symposium on Logic in Computer Science, pp. 278-292. IEEE Computer Society Press, Los Alamitos (1996).
[17]
Henzinger, T.A., Ho, P.H., Wong-Toi, H.: Algorithmic analysis of nonlinear hybrid systems. IEEE Transactions on Automatic Control 43, 540-554 (1998).
[18]
Kowalewski, S., Stursberg, O., Fritz, M., Graf, H., Preuß, I.H.J.: A case study in tool-aided analysis of discretely controlled continuous systems: the two tanks problem. In: Antsaklis, P.J., Kohn, W., Lemmon, M.D., Nerode, A., Sastry, S.S. (eds.) HS 1997. LNCS, vol. 1567, Springer, Heidelberg (1999).
[19]
Martin, K.: A Foundation for Computation. PhD thesis, Department of Mathematics, Tulane University (2000).
[20]
Mycroft, A.: Abstract interpretation and Optimizing Transformations for Applicative Programs. PhD thesis, University of Edinburgh (1981).
[21]
Nedialkov, N.S., Jackson, K.R., Corliss, G.F.: Validated solutions of initial value problems for ordinary differential equations. Applied Mathematics and Computation 105(1), 21-68 (1999).
[22]
Tarski, A.: A lattice-theoretical fixpoint theorem and its applications. Pacific Journal of Mathematics 5, 285-309 (1955).
[23]
van Beek, D., Man, K., Reniers, M., Rooda, J., Schiffelers, R.: Syntax and consistent equation semantics of hybrid chi. Journal of Logic and Algebraic Programming 68(1-2), 129-210 (2006).
[24]
Winskel, G.: The formal semantics of programming languages: An introduction. MIT Press, Cambridge (1993).
Recommendations
Denotational semantics of hybrid automata
FOSSACS'06: Proceedings of the 9th European joint conference on Foundations of Software Science and Computation StructuresWe introduce a denotational semantics for non-linear hybrid automata, and relate it to the operational semantics given in terms of hybrid trajectories. The semantics is defined as least fixpoint of an operator on the continuous domain of functions of ...
A Denotational Semantics for Circus
Circus specifications define both data and behavioural aspects of systems using a combination of Z and CSP. Previously, a denotational semantics has been given to Circus; however, as a shallow embedding of Circus in Z, it was not possible to use it to ...
Comments
Information & Contributors
Information
Published In
In-Cooperation
- EAPLS: European Association for Programming Languages and Systems
- EATCS: European Association for Theoretical Computer Science
- European Association of Software Science and Technology
Publisher
Springer-Verlag
Berlin, Heidelberg
Publication History
Published: 29 March 2008
Qualifiers
- Article
Contributors
Other Metrics
Bibliometrics & Citations
Bibliometrics
Article Metrics
- 0Total Citations
- 1Total Downloads
- Downloads (Last 12 months)0
- Downloads (Last 6 weeks)0
Reflects downloads up to 16 Feb 2025