Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
article

A Note on Forcing and Type Theory

Published: 01 January 2010 Publication History

Abstract

The goal of this note is to show the uniform continuity of definable functional in intuitionistic type theory as an application of forcing with dependent type theory.

References

[1]
S. Allen. A Non-Type-Theoretic Definition of Martin-Löf's Types. Proceedings of the Second IEE Symposium LICS 1987, 215-224.
[2]
H. Barendregt. The impact of the lambda calculus. Bulletin of Symbolic Logic, Volume 3, 1997, 181-215.
[3]
M.J. Beeson. Foundations of Constructive Mathematics. Springer-Verlag, 1985.
[4]
E.W. Beth. The foundations of mathematics. North-Holland, Amsterdam, 1965.
[5]
L.E.J. Brouwer. Über Definitionsbereiche von Funktionen. Mathematische Annalen, 97:60-75. English translation in van Heijenoort, (1967, 446-463).
[6]
P. Cohen. The discovery of forcing. Rocky Mountain J. Math. 32 (2002), 1071-110.
[7]
K. Gödel. On a hitherto unexploited extension of the finitary standpoint. in Collected Works, Vol. II. Publications 1938-1974, Oxford University Press, 1990.
[8]
D. Hilbert. Über das Unendliche. Mathematische Annalen, 95:161-190. Lecture given in Münster, 4 june 1925. English translation in van Heijenoort, (1967, 367-392).
[9]
J.L. Krivine. Structures de réalisabilité, RAM et ultrafiltre sur N. To appear, 2010.
[10]
P. Martin-Löf. On the strength of intuitionistic reasoning. Unpublished report, talk at the Bucharest conference, 1971.
[11]
P. Martin-Löf. An intuitionistic theory of types in Twenty-Five Years of Type Theory, G. Sambin and J. Smith Eds., Oxford University Press, 1998 (reprinted version of an unpublished report from 1972).
[12]
R. Platek. Generalized Recursion Theory, Stanford and Me. In: Odifreddi, P. (ed.) Kreiseliana, About and Around Georg Kreisel (1996).
[13]
W.W. Tait. Intensional interpretations of functional of finite types I. Journal of Symbolic Logic 32 (1967), 198-212.
[14]
J. van Heijenoort (ed.) From Frege to Hilbert: A Source Book in Mathematical Logic, 1897-1941. Harvard University Press, 1967.

Cited By

View all
  • (2016)A nominal exploration of intuitionismProceedings of the 5th ACM SIGPLAN Conference on Certified Programs and Proofs10.1145/2854065.2854077(130-141)Online publication date: 18-Jan-2016

Index Terms

  1. A Note on Forcing and Type Theory

      Recommendations

      Comments

      Information & Contributors

      Information

      Published In

      cover image Fundamenta Informaticae
      Fundamenta Informaticae  Volume 100, Issue 1-4
      Understanding Computers' Intelligence Celebrating the 100th Volume of Fundamenta Informaticae in Honour of Helena Rasiowa
      January 2010
      229 pages

      Publisher

      IOS Press

      Netherlands

      Publication History

      Published: 01 January 2010

      Author Tags

      1. Type theory
      2. dependent types
      3. forcing

      Qualifiers

      • Article

      Contributors

      Other Metrics

      Bibliometrics & Citations

      Bibliometrics

      Article Metrics

      • Downloads (Last 12 months)0
      • Downloads (Last 6 weeks)0
      Reflects downloads up to 01 Nov 2024

      Other Metrics

      Citations

      Cited By

      View all
      • (2016)A nominal exploration of intuitionismProceedings of the 5th ACM SIGPLAN Conference on Certified Programs and Proofs10.1145/2854065.2854077(130-141)Online publication date: 18-Jan-2016

      View Options

      View options

      Get Access

      Login options

      Media

      Figures

      Other

      Tables

      Share

      Share

      Share this Publication link

      Share on social media