Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.5555/1886521.1886526guideproceedingsArticle/Chapter ViewAbstractPublication PagesConference Proceedingsacm-pubtype
Article

Submodular secretary problem and extensions

Published: 01 September 2010 Publication History

Abstract

Online auction is the essence of many modern markets, particularly networked markets, in which information about goods, agents, and outcomes is revealed over a period of time, and the agents must make irrevocable decisions without knowing future information. Optimal stopping theory, especially the classic secretary problem, is a powerful tool for analyzing such online scenarios which generally require optimizing an objective function over the input. The secretary problem and its generalization the multiple-choice secretary problem were under a thorough study in the literature. In this paper, we consider a very general setting of the latter problem called the submodular secretary problem, in which the goal is to select k secretaries so as to maximize the expectation of a (not necessarily monotone) submodular function which defines efficiency of the selected secretarial group based on their overlapping skills. We present the first constant-competitive algorithm for this case. In a more general setting in which selected secretaries should form an independent (feasible) set in each of l given matroids as well, we obtain an O(l log2 r)-competitive algorithm generalizing several previous results, where r is the maximum rank of the matroids. Another generalization is to consider l knapsack constraints (i.e., a knapsack constraint assigns a nonnegative cost to each secretary, and requires that the total cost of all the secretaries employed be no more than a budget value) instead of the matroid constraints, for which we present an O(l)-competitive algorithm. In a sharp contrast, we show for a more general setting of subadditive secretary problem, there is no Õ(√n)-competitive algorithm and thus submodular functions are the most general functions to consider for constant-competitiveness in our setting. We complement this result by giving a matching O(√n)-competitive algorithm for the subadditive case.

References

[1]
Ageev, A.A., Sviridenko, M.I.: An 0.828-approximation algorithm for the uncapacitated facility location problem. Discrete Appl. Math. 93, 149-156 (1999).
[2]
Ajtai, M., Megiddo, N., Waarts, O.: Improved algorithms and analysis for secretary problems and generalizations. SIAM J. Discrete Math. 14, 1-27 (2001).
[3]
Asadpour, A., Nazerzadeh, H., Saberi, A.: Stochastic submodular maximization. In: Papadimitriou, C., Zhang, S. (eds.) WINE 2008. LNCS, vol. 5385, pp. 477-489. Springer, Heidelberg (2008).
[4]
Babaioff, M., Immorlica, N., Kempe, D., Kleinberg, R.: A knapsack secretary problem with applications. In: Charikar, M., Jansen, K., Reingold, O., Rolim, J.D.P. (eds.) RANDOM 2007 and APPROX 2007. LNCS, vol. 4627, pp. 16c28. Springer, Heidelberg (2007).
[5]
Babaioff, M., Immorlica, N., Kempe, D., Kleinberg, R.: Online auctions and generalized secretary problems. SIGecom Exch. 7, 1-11 (2008).
[6]
Babaioff, M., Immorlica, N., Kleinberg, R.: Matroids, secretary problems, and online mechanisms. In: SODA, pp. 434-443 (2007).
[7]
Bateni, M., Hajiaghayi, M., Zadimoghaddam, M.: The submodular secretary problem, Tech. Report TD-7UEP26, AT&T Labs-Research (July 2009).
[8]
Bateni, M., Hajiaghayi, M., Zadimoghaddam, M.: Submodular secretary problem and extensions, Tech. Report 2010-002, CSAIL, MIT (February 2010).
[9]
Calinescu, G., Chekuri, C., Pál, M., Vondrák, J.: Maximizing a submodular set function subject to a matroid constraint (extended abstract). In: Fischetti, M., Williamson, D.P. (eds.) IPCO 2007. LNCS, vol. 4513, pp. 182-196. Springer, Heidelberg (2007).
[10]
Cornuejols, G., Fisher, M., Nemhauser, G.L.: On the uncapacitated location problem. In: Studies in Integer Programming (Proc. Workshop, Bonn. 1975). Ann. of Discrete Math., vol. 1, pp. 163-177. North-Holland, Amsterdam (1977).
[11]
Cornuejols, G., Fisher, M.L., Nemhauser, G.L.: Location of bank accounts to optimize float: an analytic study of exact and approximate algorithms. Manage. Sci. 23, 789-810 (1976/1977).
[12]
Dynkin, E.B.: The optimum choice of the instant for stopping a markov process. Sov. Math. Dokl. 4, 627-629 (1963).
[13]
Edmonds, J.: Submodular functions, matroids, and certain polyhedra. In: Combinatorial Structures and their Applications (Proc. Calgary Internat. Conf., Calgary, Alta., 1969), pp. 69-87. Gordon and Breach, New York (1970).
[14]
Feige, U.: A threshold of ln n for approximating set cover. J. ACM 45, 634-652 (1998).
[15]
Feige, U.: On maximizing welfare when utility functions are subadditive. In: STOC, pp. 41-50 (2006).
[16]
Feige, U., Goemans, M.X.: Approximating the value of two power proof systems, with applications to MAX 2SAT and MAX DICUT. In: ISTCS, p. 182 (1995).
[17]
Feige, U., Mirrokni, V.S., Vondrák, J.: Maximizing non-monotone submodular functions. In: FOCS, pp. 461-471 (2007).
[18]
Fisher, M.L., Nemhauser, G.L., Wolsey, L.A.: An analysis of approximations for maximizing submodular set functions. II. Math. Prog. Stud., 73-87 (1978), Polyhedral combinatorics.
[19]
Freeman, P.R.: The secretary problem and its extensions: a review. Internat. Statist. Rev. 51, 189-206 (1983).
[20]
Gilbert, J.P., Mosteller, F.: Recognizing the maximum of a sequence. J. Amer. Statist. Assoc. 61, 35-73 (1966).
[21]
Glasser, K.S., Holzsager, R., Barron, A.: The d choice secretary problem. Comm. Statist. C--Sequential Anal. 2, 177-199 (1983).
[22]
Goemans, M.X., Williamson, D.P.: Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming. J. Assoc. Comput. Mach. 42, 1115-1145 (1995).
[23]
Gupta, A., Roth, A., Schoenebeck, G., Talwar, K.: Constrained non-monotone submodular maximization: offline and secretary algorithms (2010), http://www.cs.cmu.edu/alroth/submodularsecretaries.html
[24]
Hajiaghayi, M.T., Kleinberg, R., Parkes, D.C.: Adaptive limited-supply online auctions. In: EC, pp. 71-80 (2004).
[25]
Hajiaghayi, M.T., Kleinberg, R., Sandholm, T.: Automated online mechanism design and prophet inequalities. In: AAAI, pp. 58-65 (2007).
[26]
Halperin, E., Zwick, U.: Combinatorial approximation algorithms for the maximum directed cut problem. In: SODA, pp. 1-7 (2001).
[27]
Håstad, J.: Some optimal inapproximability results. J. ACM 48, 798-859 (2001).
[28]
Hazan, E., Safra, S., Schwartz, O.: On the complexity of approximating k-set packing. Computational Complexity 15, 20-39 (2006).
[29]
Immorlica, N., Kleinberg, R.D., Mahdian, M.: Secretary problems with competing employers. In: Spirakis, P.G., Mavronicolas, M., Kontogiannis, S.C. (eds.) WINE 2006. LNCS, vol. 4286, pp. 389-400. Springer, Heidelberg (2006).
[30]
Iwata, S., Fleischer, L., Fujishige, S.: A combinatorial strongly polynomial algorithm for minimizing submodular functions. J. ACM 48, 761-777 (2001).
[31]
Khot, S., Kindler, G., Mossel, E., O'Donnell, R.: Optimal inapproximability results for maxcut and other 2-variable csps? In: FOCS, pp. 146-154 (2004).
[32]
Khuller, S., Moss, A., Naor, J.: The budgeted maximum coverage problem. Inf. Process. Lett. 70, 39-45 (1999).
[33]
Kleinberg, R.: A multiple-choice secretary algorithm with applications to online auctions. In: SODA, pp. 630-631 (2005).
[34]
Lee, J., Mirrokni, V., Nagarajan, V., Sviridenko, M.: Maximizing non-monotone submodular functions under matroid and knapsack constraints. In: STOC, pp. 323-332 (2009).
[35]
Lovász, L.: Submodular functions and convexity. In: Mathematical programming: the state of the art (Bonn, 1982), pp. 235-257. Springer, Berlin (1982).
[36]
Nemhauser, G.L., Wolsey, L.A., Fisher, M.L.: An analysis of approximations for maximizing submodular set functions. I. Math. Program. 14, 265-294 (1978).
[37]
Queyranne, M.: A combinatorial algorithm for minimizing symmetric submodular functions. In: SODA, pp. 98-101 (1995).
[38]
Schrijver, A.: A combinatorial algorithm minimizing submodular functions in strongly polynomial time. J. Combin. Theory Ser. B 80, 346-355 (2000).
[39]
Sviridenko, M.: A note on maximizing a submodular set function subject to a knapsack constraint. Oper. Res. Lett. 32, 41-43 (2004).
[40]
Vanderbei, R.J.: The optimal choice of a subset of a population. Math. Oper. Res. 5, 481-486 (1980).
[41]
Vondrák, J.: Symmetry and approximability of submodular maximization problems. In: FOCS (2009).
[42]
Wilson, J.G.: Optimal choice and assignment of the best m of n randomly arriving items. Stochastic Process. Appl. 39, 325-343 (1991).

Cited By

View all
  • (2018)Prophet secretary for combinatorial auctions and matroidsProceedings of the Twenty-Ninth Annual ACM-SIAM Symposium on Discrete Algorithms10.5555/3174304.3175316(700-714)Online publication date: 7-Jan-2018
  • (2018)Matroid Secretary ProblemsJournal of the ACM10.1145/321251265:6(1-26)Online publication date: 19-Nov-2018
  • (2017)Submodular Optimization Over Sliding WindowsProceedings of the 26th International Conference on World Wide Web10.1145/3038912.3052699(421-430)Online publication date: 3-Apr-2017
  • Show More Cited By

Recommendations

Comments

Information & Contributors

Information

Published In

cover image Guide Proceedings
APPROX/RANDOM'10: Proceedings of the 13th international conference on Approximation, and 14 the International conference on Randomization, and combinatorial optimization: algorithms and techniques
September 2010
781 pages
ISBN:3642153682
  • Editors:
  • Maria Serna,
  • Ronen Shaltiel,
  • Klaus Jansen,
  • José Rolim

Publisher

Springer-Verlag

Berlin, Heidelberg

Publication History

Published: 01 September 2010

Qualifiers

  • Article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 09 Nov 2024

Other Metrics

Citations

Cited By

View all
  • (2018)Prophet secretary for combinatorial auctions and matroidsProceedings of the Twenty-Ninth Annual ACM-SIAM Symposium on Discrete Algorithms10.5555/3174304.3175316(700-714)Online publication date: 7-Jan-2018
  • (2018)Matroid Secretary ProblemsJournal of the ACM10.1145/321251265:6(1-26)Online publication date: 19-Nov-2018
  • (2017)Submodular Optimization Over Sliding WindowsProceedings of the 26th International Conference on World Wide Web10.1145/3038912.3052699(421-430)Online publication date: 3-Apr-2017
  • (2016)Budget-feasible online incentive mechanisms for crowdsourcing tasks truthfullyIEEE/ACM Transactions on Networking10.1109/TNET.2014.237928124:2(647-661)Online publication date: 1-Apr-2016
  • (2016)Shrinking Maxima, Decreasing CostsAlgorithmica10.1007/s00453-015-9995-874:4(1205-1223)Online publication date: 1-Apr-2016
  • (2015)Online submodular maximization with preemptionProceedings of the twenty-sixth annual ACM-SIAM symposium on Discrete algorithms10.5555/2722129.2722209(1202-1216)Online publication date: 4-Jan-2015
  • (2015)Data-driven robotic sampling for marine ecosystem monitoringInternational Journal of Robotics Research10.1177/027836491558772334:12(1435-1452)Online publication date: 1-Oct-2015
  • (2014)Streaming submodular maximizationProceedings of the 20th ACM SIGKDD international conference on Knowledge discovery and data mining10.1145/2623330.2623637(671-680)Online publication date: 24-Aug-2014
  • (2013)Recent advances on the matroid secretary problemACM SIGACT News10.1145/2491533.249155744:2(126-142)Online publication date: 3-Jun-2013
  • (2013)Fast greedy algorithms in mapreduce and streamingProceedings of the twenty-fifth annual ACM symposium on Parallelism in algorithms and architectures10.1145/2486159.2486168(1-10)Online publication date: 23-Jul-2013
  • Show More Cited By

View Options

View options

Get Access

Login options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media