Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.5555/1886790.1886795guideproceedingsArticle/Chapter ViewAbstractPublication PagesConference Proceedingsacm-pubtype
Article

Intuitionistic logic and computability theory

Published: 06 July 2010 Publication History

Abstract

No abstract available.

References

[1]
Heyting, A.: Die formalen Regeln der intuitionistischen Logik. Sitzungsberichte der Preussisischen Akademie von Wissenschaften, Physikalisch-mathematische Klasse, 42-56 (1930)
[2]
Iemhoff, R.: On the rules of intermediate logics. Archive for Mathematical Logic 45(5), 581-599 (2006)
[3]
Kleene, S.C.: On the interpretation of intuitionistic number theory. Journal of Symbolic Logic 10, 109-124 (1945)
[4]
Kolmogorov, A.: Zur Deutung der intuitionistischen Logik. Mathematische Zeitschrift 35(1), 58-65 (1932)
[5]
Medvedev, Y.T.: Degrees of difficulty of the mass problems. Dokl. Akad. Nauk. SSSR 104(4), 501-504 (1955)
[6]
van Oosten, J.: Realizability: An introduction to its categorical side. Studies in logic and the foundations of mathematics, vol. 152. Elsevier, Amsterdam (2008)
[7]
Skvortsova, E.Z.: A faithful interpretation of the intuitionistic propositional calculus by means of an initial segment of the Medvedev lattice. Sibirsk. Math. Zh. 29(1), 171-178 (in Russian, 1988)
[8]
Simpson, S.G.: π1 0 sets and models of WKL0. In: Reverse Mathematics 2001. Lecture Notes in Logic, vol. 21. ASL (2005)
[9]
Sorbi, A.: The Medvedev lattice of degrees of difficulty. In: Cooper, S.B., Slaman, T.A., Wainer, S.S. (eds.) Computability, Enumerability, Unsolvability: Directions in Recursion Theory, London. Mathematical Society Lecture Notes, vol. 224, pp. 289-312. Cambridge University Press, Cambridge (1996)
[10]
Sorbi, A., Terwijn, S.A.: Intermediate logics and factors of the Medvedev lattice. Annals of Pure and Applied Logic 155, 69-85 (2008)
[11]
Terwijn, S.A.: Syllabus computabiliy theory, Vienna. Available at the author's web pages (2004)
[12]
Terwijn, S.A.: The Medvedev lattice of computably closed sets. Archive for Mathematical Logic 45(2), 179-190 (2006)
[13]
Terwijn, S.A.: Constructive logic and computational lattices, habilitation thesis, Technical University of Vienna (2007)
  1. Intuitionistic logic and computability theory

    Recommendations

    Comments

    Information & Contributors

    Information

    Published In

    cover image Guide Proceedings
    WoLLIC'10: Proceedings of the 17th international conference on Logic, language, information and computation
    July 2010
    259 pages
    ISBN:3642138233
    • Editors:
    • Anuj Dawar,
    • Ruy de Queiroz

    Sponsors

    • FoLLI: European Association for Logic, Language and Information
    • SBL: Sociedade Brasileira de Lógica
    • EATCS: European Association for Theoretical Computer Science
    • IGPL: Interest Group in Pure and Applied Logics
    • ASL: Association for Symbolic Logic

    Publisher

    Springer-Verlag

    Berlin, Heidelberg

    Publication History

    Published: 06 July 2010

    Qualifiers

    • Article

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • 0
      Total Citations
    • 0
      Total Downloads
    • Downloads (Last 12 months)0
    • Downloads (Last 6 weeks)0
    Reflects downloads up to 04 Jan 2025

    Other Metrics

    Citations

    View Options

    View options

    Media

    Figures

    Other

    Tables

    Share

    Share

    Share this Publication link

    Share on social media