Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.5555/1887255.1887291guideproceedingsArticle/Chapter ViewAbstractPublication PagesConference Proceedingsacm-pubtype
Article

Differential evolution algorithms with cellular populations

Published: 11 September 2010 Publication History

Abstract

Differential Evolution (DE) algorithms are efficient Evolutionary Algorithms (EAs) for the continuous optimization domain. There exist a large number of DE variants in the literature. In this paper, we analyze the effect of adding a cellular structure to the population of some of the most outstanding existing ones. The original algorithms will be compared versus their equivalent versions with cellular population both in terms of accuracy and convergence speed. As a result, we conclude that the cellular versions of the algorithms perform, in general, better than the equivalent state-of-the-art ones in the two considered issues.

References

[1]
Storn, R., Price, K.: Differential evolution--a simple and efficient heuristic for global optimization over continuous spaces. J. of Glob. Opt. 11(4), 341-359 (1997)
[2]
Bäck, T.: Evolutionary Algorithms in Theory and Practice: Evolution Strategies, Evolutionary Programming, Genetic Algorithms. Oxford University Press, Oxford (1996)
[3]
Bäck, T., Fogel, D., Michalewicz, Z. (eds.): Handbook of Evolutionary Computation. Oxford University Press, Oxford (1997)
[4]
De Jong, K.: Evolutionary Computation. A Unified Approach. MIT Press, Cambridge (2006)
[5]
Alba, E., Dorronsoro, B.: Cellular Genetic Algorithms. Springer, Heidelberg (2008)
[6]
Alba, E., Tomassini, M.: Parallelism and evolutionary algorithms. IEEE Transactions on Evolutionary Computation 6(5), 443-462 (2002)
[7]
Alba, E., Troya, J.: Improving flexibility and efficiency by adding parallelism to genetic algorithms. Statistics and Computing 12(2), 91-114 (2002)
[8]
Luque, G., Alba, E., Dorronsoro, B.: Parallel Genetic Algorithms. In: Parallel Metaheuristics: A New Class of Algorithms, pp. 107-125. JohnWiley & Sons, Chichester (2005)
[9]
Tomassini, M.: Spatially Structured Evolutionary Algorithms: Artificial Evolution in Space and Time. Natural Computing Series. Springer, Heidelberg (2005)
[10]
Kennedy, J., Mendes, R.: Population structure and particle swarm performance. In: CEC, pp. 1671-1676. IEEE Press, Los Alamitos (2002)
[11]
Janson, S., Middendorf, M.: A hierarchical particle swarm optimizer and its adaptive variant. IEEE Systems, Man and Cybernetics - Part B 35(6), 1272-1282 (2005)
[12]
Folino, G., Pizzuti, C., Spezzano, G.: A scalable cellular implementation of parallel genetic programming. IEEE Trans. on Evolutionary Comp. 7(1), 37-53 (2003)
[13]
Alba, E., Madera, J., Dorronsoro, B., Ochoa, A., Soto, M.: Theory and practice of cellular UMDA for discrete optimization. In: PPSN-IX, pp. 242-251. Springer, Heidelberg (2006)
[14]
Alba, E.: Parallel Metaheuristics: A New Class of Algorithms. Wiley, Chichester (2005)
[15]
Talbi, E.G.: Parallel Combinatorial Optimization. John Wiley & Sons, Chichester (2006)
[16]
Dorronsoro, B., Bouvry, P.: Studying the effects of several population management schemes in differential evolution. IEEE Trans. on Ev. Comp. (2010) (submitted)
[17]
Das, S., Abraham, A., Chakraborty, U.K., Konar, A.: Differential evolution using a neighborhood-based mutation operator. IEEE TEC 13(3), 526-553 (2009)
[18]
Zhang, J., Sanderson, A.C.: JADE: Adaptive differential evolution with optional external archive. IEEE Trans. on Evolutionary Computation 13(5), 945-958 (2009)
[19]
Qin, A.K., Huang, V.L., Suganthan, P.N.: Differential evolution algorithm with strategy adaptation for global numerical optimization. IEEE Transactions on Evolutionary Computation 13(2), 398-417 (2009)
[20]
Brest, J., Greiner, S., Bo?sković, B., Mernik, M., Žumer, V.: Self-adapting control parameters in differential evolution: A comparative study on numerical benchmark problems. IEEE Transactions on Evolutionary Computation 10(6), 646-657 (2006)
[21]
Alba, E., Dorronsoro, B., Giacobini, M., Tomassini, M.: 7, Decentralized Cellular Evolutionary Algorithms. In: Handbook of Bioinspired Algorithms and Applications, pp. 103-120. CRC Press, Boca Raton (2006)
[22]
Suganthan, P.N., Hansen, N., Liang, J.J., Deb, K., Chen, Y.P., Auger, A., Tiwari, S.: Problem definitions and evaluation criteria for the CEC 2005 special session on real-parameter optimization. Technical report, Nanyang Technological University, Singapore, and Kanpur Genetic Algorithms Laboratory, IIT Kanpur (2005)
[23]
García, S., Molina, D., Lozano, M., Herrera, F.: A study on the use of nonparametric tests for analyzing the evolutionary algorithms' behaviour: A case study on the CEC 2005 special session on real parameter optimization. Journal of Heuristics 15, 617-644 (2009)

Cited By

View all
  • (2018)Multilevel Thresholding for Image Segmentation Based on Cellular MetaheuristicsInternational Journal of Applied Metaheuristic Computing10.4018/IJAMC.20181001019:4(1-32)Online publication date: 1-Oct-2018
  • (2017)Island-cellular model differential evolution for large-scale global optimizationProceedings of the Genetic and Evolutionary Computation Conference Companion10.1145/3067695.3084208(1841-1848)Online publication date: 15-Jul-2017

Recommendations

Comments

Information & Contributors

Information

Published In

cover image Guide Proceedings
PPSN'10: Proceedings of the 11th international conference on Parallel problem solving from nature: Part II
September 2010
556 pages
ISBN:3642158706
  • Editors:
  • Robert Schaefer,
  • Carlos Cotta,
  • Joanna Kołodziej,
  • Günter Rudolph

Sponsors

  • Hewlett-Packard Polska
  • Microsoft: Microsoft
  • Intel: Intel

Publisher

Springer-Verlag

Berlin, Heidelberg

Publication History

Published: 11 September 2010

Qualifiers

  • Article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 10 Feb 2025

Other Metrics

Citations

Cited By

View all
  • (2018)Multilevel Thresholding for Image Segmentation Based on Cellular MetaheuristicsInternational Journal of Applied Metaheuristic Computing10.4018/IJAMC.20181001019:4(1-32)Online publication date: 1-Oct-2018
  • (2017)Island-cellular model differential evolution for large-scale global optimizationProceedings of the Genetic and Evolutionary Computation Conference Companion10.1145/3067695.3084208(1841-1848)Online publication date: 15-Jul-2017

View Options

View options

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media