Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
article

Finding cliques by quantum adiabatic evolution

Published: 01 April 2002 Publication History

Abstract

Quantum adiabatic evolution provides a general technique for the solution of combinatorial search problems on quantum computers. We present the results of a numerical study of a particular application of quantum adiabatic evolution, the problem of finding the largest clique in a random graph. An n-vertex random graph has each edge included with probability 1/2, and a clique is a completely connected subgraph. There is no known classical algorithm that finds the largest clique in a random graph with high probability and runs in a time polynomial in n. For the small graphs we are able to investigate (n ≤ 18), the quantum algorithm appears to require only a quadratic run time.

References

[1]
E. Farhi, J. Goldstone, S. Gutmann, and M. Sipser, Quantum computation by adiabatic evolution, quant-ph/0001106.
[2]
For a related technique, see T. Kadowaki and H. Nishimori, Quantum annealing and the transverse Ising model, cond-mat/9804280; Phys. Rev. E 58, 5355 (1998).
[3]
E. Farhi, J. Goldstone, and S. Gutmann, A numerical study of the performance of a quantum adiabatic evolution algorithm for satisfiability, quant-ph/0007071.
[4]
E. Farhi, J. Goldstone, S. Gutmann, J. Lapan, A. Lundgren, and D. Preda, A quantum adiabatic evolution algorithm applied to random instances of an NP-complete problem, quantph/0104129; Science 292, 472 (2001).
[5]
M. Jerrum, Large cliques elude the Metropolis process, Random Struct. Alg. 3, 347 (1992).
[6]
A. Messiah, Quantum Mechanics, Vol. II (Wiley, New York, 1976).
[7]
P. Erdös and A. Rényi, On the evolution of random graphs, Publ. Math. Inst. Hung. Acad. Sci. 8, 455 (1964).
[8]
B. Bollobás, Random Graphs (Academic, New York, 1985).
[9]
A. Frieze and C. McDiarmid, Algorithmic theory of random graphs, Random Struct. Alg. 10, 5 (1997).
[10]
D. W. Matula, The employee party problem, Notices Amer. Math. Soc. 19, A-382 (1972).
[11]
A. Juels and M. Peinado, Hiding cliques for cryptographic security, Proc. 9th Annual ACMSIAM SODA, 678 (1998).
[12]
R. Cleve and D. P. DiVincenzo, Schumacher's quantum data compression as a quantum computation, Phys. Rev. A 54, 2636 (1996).
[13]
I. L. Chuang and D. S. Modha, Reversible arithmetic coding for quantum data compression, IEEE Trans. Inf. Theory 46, 1104 (2000).

Cited By

View all
  • (2021)Ordering for Communication-Efficient Quickest Change Detection in a Decomposable Graphical ModelIEEE Transactions on Signal Processing10.1109/TSP.2021.307730269(4710-4723)Online publication date: 1-Jan-2021
  • (2021)Preparation of spin eigenstates including the Dicke states with generalized all-coupled interaction in a spintronic quantum computing architectureQuantum Information Processing10.1007/s11128-021-03063-720:5Online publication date: 1-May-2021
  • (2014)Efficient quantum algorithms to construct arbitrary Dicke statesQuantum Information Processing10.1007/s11128-014-0797-813:9(2049-2069)Online publication date: 1-Sep-2014
  • Show More Cited By
  1. Finding cliques by quantum adiabatic evolution

    Recommendations

    Comments

    Information & Contributors

    Information

    Published In

    cover image Quantum Information & Computation
    Quantum Information & Computation  Volume 2, Issue 3
    April 2002
    76 pages

    Publisher

    Rinton Press, Incorporated

    Paramus, NJ

    Publication History

    Published: 01 April 2002
    Revised: 15 February 2002
    Received: 28 November 2001

    Author Tags

    1. adiabatic evolution
    2. quantum algorithms
    3. quantum computation

    Qualifiers

    • Article

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)0
    • Downloads (Last 6 weeks)0
    Reflects downloads up to 10 Nov 2024

    Other Metrics

    Citations

    Cited By

    View all
    • (2021)Ordering for Communication-Efficient Quickest Change Detection in a Decomposable Graphical ModelIEEE Transactions on Signal Processing10.1109/TSP.2021.307730269(4710-4723)Online publication date: 1-Jan-2021
    • (2021)Preparation of spin eigenstates including the Dicke states with generalized all-coupled interaction in a spintronic quantum computing architectureQuantum Information Processing10.1007/s11128-021-03063-720:5Online publication date: 1-May-2021
    • (2014)Efficient quantum algorithms to construct arbitrary Dicke statesQuantum Information Processing10.1007/s11128-014-0797-813:9(2049-2069)Online publication date: 1-Sep-2014
    • (2012)Investigating the performance of an adiabatic quantum optimization processorQuantum Information Processing10.5555/2124660.212469311:1(77-88)Online publication date: 1-Feb-2012
    • (2010)The role of symmetries in adiabatic quantum algorithmsQuantum Information & Computation10.5555/2011438.201144710:1(109-140)Online publication date: 1-Jan-2010
    • (2007)Bounding run-times of local adiabatic algorithmsProceedings of the 4th international conference on Theory and applications of models of computation10.5555/1767854.1767897(450-461)Online publication date: 22-May-2007
    • (2003)Adiabatic quantum state generation and statistical zero knowledgeProceedings of the thirty-fifth annual ACM symposium on Theory of computing10.1145/780542.780546(20-29)Online publication date: 9-Jun-2003

    View Options

    View options

    Get Access

    Login options

    Media

    Figures

    Other

    Tables

    Share

    Share

    Share this Publication link

    Share on social media