Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.5555/2017863.2017883guideproceedingsArticle/Chapter ViewAbstractPublication PagesConference Proceedingsacm-pubtype
Article

Spatial entropy-based clustering for mining data with spatial correlation

Published: 24 May 2011 Publication History

Abstract

Due to the inherent characteristics of spatial datasets, spatial clustering methods need to consider spatial attributes, nonspatial attributes and spatial correlation among non-spatial attributes across space. However, most existing spatial clustering methods ignore spatial correlation, considering spatial and non-spatial attributes independently. In this paper, we first prove that spatial entropy is a monotonic decreasing function for non-spatial attribute similarity and spatial correlation. Then we propose a novel density-based spatial clustering method called SEClu, which applies spatial entropy in measuring non-spatial attribute similarity and spatial correlation during the clustering process. The experimental results from both the synthetic data and the real application demonstrate that SEClu can effectively identify spatial clusters with spatial correlated patterns.

References

[1]
Sander, J., Ester, M., Kriegel, H.P., Xu, X.W.: Density-based Clustering in Spatial Databases: The Algorithm GDBSCAN and its Applications. Data Mining and Knowledge Discovery 2(2), 169-194 (1998).
[2]
Shekhar, S., Chawla, S.: Spatial Databases A Tour. Pearson Education, London (2003).
[3]
Wang, X., Hamilton, H.J.: DBRS: A Density-based Spatial Clustering Method with Random Sampling. In: Whang, K.-Y., Jeon, J., Shim, K., Srivastava, J. (eds.) PAKDD 2003. LNCS (LNAI), vol. 2637, pp. 563-575. Springer, Heidelberg (2003).
[4]
Claramunt, C.: A Spatial Form of Diversity. In: Cohn, A.G., Mark, D.M. (eds.) COSIT 2005. LNCS, vol. 3693, pp. 218-231. Springer, Heidelberg (2005).
[5]
Ng, R.T., Han, J.W.: CLARANS: A Method for Clustering Objects for Spatial Data Mining. IEEE Transactions on Knowledge and Data Engineering 14(5), 1003-1016 (2002).
[6]
Kailing, K., Kriegel, H.-P., Pryakhin, A., Schubert, M.: Clustering Multirepresented Objects with Noise. In: Dai, H., Srikant, R., Zhang, C. (eds.) PAKDD 2004. LNCS (LNAI), vol. 3056, pp. 394-403. Springer, Heidelberg (2004).
[7]
Li, X., Claramunt, C.: A Spatial Entropy-Based Decision Tree for Classification of Geographical Information. Transactions in GIS 10(3), 451-467 (2006).
[8]
Tobler, W.R.: Computer Movie Simulating Urban Growth in Detroit Region. Economic Geography 46(2), 234-240 (1970).
[9]
Ester, M., Kriegel, H.P., Sander, J., Xu, X.: A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise. In: 2nd International Knowledge Discovery and Data Mining, pp. 226-231. AAAI Press, Portland (1996).
[10]
Sturges, H.A.: The Choice of A Class Interval. Journal of the American Statistical Association 21, 65-66 (1926).

Cited By

View all

Recommendations

Comments

Information & Contributors

Information

Published In

cover image Guide Proceedings
PAKDD'11: Proceedings of the 15th Pacific-Asia conference on Advances in knowledge discovery and data mining - Volume Part I
May 2011
560 pages
ISBN:9783642208409
  • Editors:
  • Joshua Zhexue Huang,
  • Longbing Cao,
  • Jaideep Srivastava

Publisher

Springer-Verlag

Berlin, Heidelberg

Publication History

Published: 24 May 2011

Author Tags

  1. spatial clustering
  2. spatial correlation
  3. spatial entropy

Qualifiers

  • Article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 24 Dec 2024

Other Metrics

Citations

Cited By

View all

View Options

View options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media