Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.5555/2023332.2023355guideproceedingsArticle/Chapter ViewAbstractPublication PagesConference Proceedingsacm-pubtype
Article

A hybrid evolutionary approach to obtain better quality classifiers

Published: 08 June 2011 Publication History

Abstract

We present an extra measurement for classifiers, responding to the need to evaluate them with more than accuracy alone. This measure should be able to express, at least to some degree, the extent to which all classes are taken into account in a classification problem. In this communication we propose sensitivity dispersion (being as it is, the associated statistical dispersion measurement of accuracy), as the appropriate measure to have a more complete evaluation of the quality of classifiers. We use the Evolutionary Extreme Learning Machine algorithm, with a specific fitness function to optimize both measures simultaneously, and we compare it with other classifiers.

References

[1]
Blake, C.L., Merz, C.J.: UCI repository of machine learning databases (1998)
[2]
Caballero, F., Martínez, F.J., Hervás, C., Gutiérrez, P.A.: Sensitivity versus accuracy in multiclass problems using memetic pareto evolutionary neural networks. IEEE Transactions on Neural Networks 21(5), 750-770 (2010)
[3]
Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.: The WEKA data mining software: An update. ACM SIGKDD Explorations Newsletter 11(1), 10-18 (2009)
[4]
Holmes, G., Donkin, A., Witten, I.H.: Weka: A machine learning workbench. In: Proceedings of the 1994 Second Australian and New Zealand Conference on Intelligent Information Systems, pp. 357-361 (2002)
[5]
Huang, G.B., Zhu, Q.Y., Siew, C.K.: Extreme learning machine: A new learning scheme of feedforward neural networks. In: Proceedings 2004 IEEE International Joint Conference on Neural Networks, pp. 985-990 (2004)
[6]
Huang, G.B., Zhu, Q.Y., Siew, C.K.: Extreme learning machine: theory and applications. Neurocomputing 70(1-3), 489-501 (2006)
[7]
Martínez-Estudillo, F.J., Gutiérrez, P.A., Hervás, C., Fernández, J.C.: Evolutionary learning by a sensitivity-accuracy approach for multi-class problems. In: IEEE Congress on Evolutionary Computation (IEEE World Congress on Computational Intelligence) CEC 2008, pp. 1581-1588 (2008)
[8]
Price, K.V., Storn, R.M., Lampinen, J.A.: Differential evolution: a practical approach to global optimization. Springer, Heidelberg (2005)
[9]
Sánchez-Monedero, J., Hervás-Martínez, C., Martínez-Estudillo, F.J., Ruz, M.C., Moreno, M.C.R., Cruz-Ramírez, M.: Evolutionary learning using a sensitivityaccuracy approach for classification. In: Corchado, E., Graña Romay, M., Manhaes Savio, A. (eds.) HAIS 2010. LNCS, vol. 6077, pp. 288-295. Springer, Heidelberg (2010)
[10]
Storn, R., Price, K.: Differential evolution: a simple and efficient heuristic for global optimization over continuous spaces. Journal of global optimization 11(4), 341-359 (1997)
[11]
Zhu, Q.Y., Qin, A.K., Suganthan, P.N., Huang, G.B.: Evolutionary extreme learning machine. Pattern recognition 38(10), 1759-1763 (2005)
  1. A hybrid evolutionary approach to obtain better quality classifiers

      Recommendations

      Comments

      Information & Contributors

      Information

      Published In

      cover image Guide Proceedings
      IWANN'11: Proceedings of the 11th international conference on Artificial neural networks conference on Advances in computational intelligence - Volume Part II
      June 2011
      684 pages
      ISBN:9783642214974
      • Editors:
      • Joan Cabestany,
      • Ignacio Rojas,
      • Gonzalo Joya

      Publisher

      Springer-Verlag

      Berlin, Heidelberg

      Publication History

      Published: 08 June 2011

      Qualifiers

      • Article

      Contributors

      Other Metrics

      Bibliometrics & Citations

      Bibliometrics

      Article Metrics

      • 0
        Total Citations
      • 0
        Total Downloads
      • Downloads (Last 12 months)0
      • Downloads (Last 6 weeks)0
      Reflects downloads up to 02 Feb 2025

      Other Metrics

      Citations

      View Options

      View options

      Figures

      Tables

      Media

      Share

      Share

      Share this Publication link

      Share on social media