Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.5555/2028067.2028073guideproceedingsArticle/Chapter ViewAbstractPublication PagesConference Proceedingsacm-pubtype
Article

Comprehensive experimental analyses of automotive attack surfaces

Published: 08 August 2011 Publication History

Abstract

Modern automobiles are pervasively computerized, and hence potentially vulnerable to attack. However, while previous research has shown that the internal networks within some modern cars are insecure, the associated threat model--requiring prior physical access--has justifiably been viewed as unrealistic. Thus, it remains an open question if automobiles can also be susceptible to remote compromise. Our work seeks to put this question to rest by systematically analyzing the external attack surface of a modern automobile. We discover that remote exploitation is feasible via a broad range of attack vectors (including mechanics tools, CD players, Bluetooth and cellular radio), and further, that wireless communications channels allow long distance vehicle control, location tracking, in-cabin audio exfiltration and theft. Finally, we discuss the structural characteristics of the automotive ecosystem that give rise to such problems and highlight the practical challenges in mitigating them.

References

[1]
BBC. Hack attacks mounted on car control systems. BBC News, May 17, 2010. Online: http://www.bbc.co. uk/news/10119492.
[2]
S. Bono, M. Green, A. Stubblefield, A. Juels, A. D. Rubin, and M. Szydlo. Security analysis of a cryptographically-enabled RFID device. In P. McDaniel, editor, USENIX Security 2005, pages 1-16. USENIX Association, July 2005.
[3]
R. Boyle. Proof-of-concept CarShark software hacks car computers, shutting down brakes, engines, and more. Popular Science, May 14, 2010. Online: http://www.popsci.com/cars/article/2010- 05/researchers-hack-car-computers-shutting-down-brakes-engine-and-more.
[4]
CAMP Vehicle Safety Communications Consortium. Vehicle safety communications project task 3 final report, Mar. 2005. Online: http://www.intellidriveusa. org/documents/vehicle-safety.pdf.
[5]
R. Charette. This car runs on code. Online: http://www.spectrum.ieee.org/feb09/7649, Feb. 2009.
[6]
T. Eisenbarth, T. Kasper, A. Moradi, C. Paar, M. Salmasizadeh, and M. Manzuri Shalmani. On the power of power analysis in the real world: A complete break of the KeeLoq code hopping scheme. In D. Wagner, editor, Crypto '08, volume 5157 of LNCS, pages 203-20. Springer-Verlag, Aug. 2008.
[7]
N. Falliere, L. O Murchu, and E. Chien. W32.Stuxnet dossier version 1.3, Nov. 2010. Online: http://www.symantec.com/content/en/ us/enterprise/media/security_response/ whitepapers/w32_stuxnet_dossier.pdf.
[8]
FlexRay Consortium. FlexRay communications system protocol specification version 2.1 revision A, Dec. 2005. Online: http://www.flexray.com/index. php?pid=47.
[9]
A. Francillon, B. Danev, and S. Capkun. Relay attacks on passive keyless entry and start systems in modern cars. In A. Perrig, editor, NDSS 2011. ISOC, Feb. 2011.
[10]
T. Hoppe, S. Kiltz, and J. Dittmann. Security threats to automotive CAN networks - practical examples and selected short-term countermeasures. In M. D. Harrison and M.-A. Sujan, editors, SAFECOMP 2008, volume 5219 of LNCS, pages 235-248. Springer-Verlag, Sept. 2008.
[11]
S. Indesteege, N. Keller, O. Dunkelman, E. Biham, and B. Preneel. A practical attack on KeeLoq. In N. Smart, editor, Eurocrypt '08, volume 4965 of LNCS, pages 1-18. Springer-Verlag, Apr. 2008.
[12]
ISO. ISO 11898-1:2003 - Road vehicles - Controller area network. International Organization for Standardization, 2003.
[13]
F. Kargl, P. Papadimitratos, L. Buttyan, M. Müter, E. Schoch, B. Wiedersheim, T.-V. Thong, G. Calandriello, A. Held, A. Kung, and J.-P. Hubaux. Secure vehicular communication systems: implementation, performance, and research challenges. IEEE Communications Magazine, 46(11):110-118, 2008.
[14]
K. Koscher, A. Czeskis, F. Roesner, S. Patel, T. Kohno, S. Checkoway, D. McCoy, B. Kantor, D. Anderson, H. Shacham, and S. Savage. Experimental security analysis of a modern automobile. In D. Evans and G. Vigna, editors, IEEE Symposium on Security and Privacy. IEEE Computer Society, May 2010.
[15]
U. E. Larson and D. K. Nilsson. Securing vehicles against cyber attacks. In A. Mili and A. Krings, editors, CSIIRW '08, pages 30:1-30:3. ACM Press, May 2008.
[16]
J. Leyden. Boffins warn on car computer security risk. The Register, May 14, 2010. Online: http://www.theregister.co.uk/2010/05/ 14/car_security_risks/.
[17]
P. Magney. iPod connections expected in more than half of U.S. car models in 2009. Online: http://www. isuppli.com/Automotive-Infotainment-and-Telematics/MarketWatch/Pages/iPod-Connections-Expected-in-More-than-Half-of-U-S-Car-Models-in-2009.aspx, Oct. 2008.
[18]
J. Markoff. Stung by security flaws, Microsoft makes software safety a top goal. The New York Times, Jan. 2002.
[19]
C. Mundie. Trustworthy computing. Online: http://download.microsoft.com/download/ a/f/2/af22fd56-7f19-47aa-8167- 4b1d73cd3c57/twc_mundie.doc, Oct. 2002.
[20]
NPR. 'Rifle' sniffs out vulnerability in bluetooth devices. All Things Considered, Apr 13, 2005.
[21]
M. Raya and J.-P. Hubaux. Securing vehicular ad hoc networks. Journal of Computer Security, 15(1):39-68, 2007.
[22]
I. Rouf, R. Miller, H. Mustafa, T. Taylor, S. Oh, W. Xu, M. Gruteser, W. Trappe, and I. Seskar. Security and privacy vulnerabilities of in-car wireless networks: A tire pressure monitoring system case study. In I. Goldberg, editor, USENIX Security 2010, pages 323-338. USENIX Association, Aug. 2010.
[23]
D. Spill and A. Bittau. Bluesniff: Eve meets alice and bluetooth. In D. Boneh, T. Garfinkel, and D. Song, editors, WOOT 2007, pages 1-10. USENIX Association, 2007.
[24]
P. R. Thorn and C. A. MacCarley. A spy under the hood: Controlling risk and automotive EDR. Risk Management, Feb. 2008.
[25]
J. Vijayan. Update: Android gaming app hides Trojan, security vendors warn. Computerworld, Aug. 17, 2010. Online: http://www.computerworld.com/s/ article/9180844/Update_Android_gaming_ app_hides_Trojan_security_vendors_ warn.
[26]
M. Wolf, A. Weimerskirch, and C. Paar. Security in automotive bus systems. In C. Paar, editor, ESCAR 2004, Nov. 2004.
[27]
M. Wolf, A. Weimerskirch, and T. Wollinger. State of the art: Embedding security in vehicles. EURASIP Journal on Embedded Systems, 2007.
[28]
Y. Zhao. Telematics: safe and fun driving. Intelligent Systems, IEEE, 17(1):10-14, Jan./Feb. 2002.

Cited By

View all
  • (2024)PHIDIAS: Power Signature Host-based Intrusion Detection in Automotive MicrocontrollersProceedings of the 2024 Workshop on Attacks and Solutions in Hardware Security10.1145/3689939.3695780(36-47)Online publication date: 19-Nov-2024
  • (2024)AI-Driven Intrusion Detection Systems (IDS) on the ROAD Dataset: A Comparative Analysis for Automotive Controller Area Network (CAN)Proceedings of the 2024 Cyber Security in CarS Workshop10.1145/3689936.3694696(39-49)Online publication date: 20-Nov-2024
  • (2024)ERACAN: Defending Against an Emerging CAN Threat ModelProceedings of the 2024 on ACM SIGSAC Conference on Computer and Communications Security10.1145/3658644.3690267(1894-1908)Online publication date: 2-Dec-2024
  • Show More Cited By
  1. Comprehensive experimental analyses of automotive attack surfaces

      Recommendations

      Comments

      Information & Contributors

      Information

      Published In

      cover image Guide Proceedings
      SEC'11: Proceedings of the 20th USENIX conference on Security
      August 2011
      35 pages
      • Program Chair:
      • David Wagner

      Sponsors

      • NSF: National Science Foundation
      • Google Inc.
      • IBMR: IBM Research
      • Microsoft Research: Microsoft Research
      • RSA: The Security Division of EMC

      Publisher

      USENIX Association

      United States

      Publication History

      Published: 08 August 2011

      Qualifiers

      • Article

      Contributors

      Other Metrics

      Bibliometrics & Citations

      Bibliometrics

      Article Metrics

      • Downloads (Last 12 months)0
      • Downloads (Last 6 weeks)0
      Reflects downloads up to 18 Feb 2025

      Other Metrics

      Citations

      Cited By

      View all
      • (2024)PHIDIAS: Power Signature Host-based Intrusion Detection in Automotive MicrocontrollersProceedings of the 2024 Workshop on Attacks and Solutions in Hardware Security10.1145/3689939.3695780(36-47)Online publication date: 19-Nov-2024
      • (2024)AI-Driven Intrusion Detection Systems (IDS) on the ROAD Dataset: A Comparative Analysis for Automotive Controller Area Network (CAN)Proceedings of the 2024 Cyber Security in CarS Workshop10.1145/3689936.3694696(39-49)Online publication date: 20-Nov-2024
      • (2024)ERACAN: Defending Against an Emerging CAN Threat ModelProceedings of the 2024 on ACM SIGSAC Conference on Computer and Communications Security10.1145/3658644.3690267(1894-1908)Online publication date: 2-Dec-2024
      • (2024)Combining Cyber Security Intelligence to Refine Automotive Cyber ThreatsACM Transactions on Privacy and Security10.1145/364407527:2(1-34)Online publication date: 5-Feb-2024
      • (2024)A Lightweight and Confidential Communication Scheme for On-Vehicle ECUsIEEE Network: The Magazine of Global Internetworking10.1109/MNET.2024.336594638:3(34-40)Online publication date: 20-Feb-2024
      • (2023)ZBCANProceedings of the 32nd USENIX Conference on Security Symposium10.5555/3620237.3620623(6893-6910)Online publication date: 9-Aug-2023
      • (2023)Access deniedProceedings of the 32nd USENIX Conference on Security Symposium10.5555/3620237.3620622(6877-6892)Online publication date: 9-Aug-2023
      • (2023)Enhancing In-Vehicle Network Security Through Bitstream Feature Extraction-Based Intrusion DetectionProceedings of the 2023 Fifteenth International Conference on Contemporary Computing10.1145/3607947.3607989(224-229)Online publication date: 3-Aug-2023
      • (2023)DT-DS: CAN Intrusion Detection with Decision Tree EnsemblesACM Transactions on Cyber-Physical Systems10.1145/35661327:1(1-27)Online publication date: 22-Mar-2023
      • (2022)CANOA: CAN Origin Authentication through Power Side-channel MonitoringACM Transactions on Cyber-Physical Systems10.1145/35712888:2(1-30)Online publication date: 18-Nov-2022
      • Show More Cited By

      View Options

      View options

      Figures

      Tables

      Media

      Share

      Share

      Share this Publication link

      Share on social media