Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.5555/2033460.2033476guideproceedingsArticle/Chapter ViewAbstractPublication PagesConference Proceedingsacm-pubtype
Article

Multi-cue-based crowd segmentation in stereo vision

Published: 29 August 2011 Publication History

Abstract

People counting and human detection have always been important objectives in visual surveillance. With the decrease in the cost of stereo cameras, they can potentially be used to develop new algorithms and achieve better accuracy. This paper introduces a multi-cue-based method for individual person segmentation in stereo vision. Shape cues inside the crowd are explored with a block-based Implicit Shape Model. Depth cues are obtained from the disparity values of some foreground blobs, which are calculated concurrently during crowd segmentation. Crowd segmentation is therefore achieved with evidences from both shape and depth cues. The methods were evaluated on two video sequences. The results show that the segmentation performance has been improved when depth cues are considered.

References

[1]
Zhao, L., Thorpe, C.E.: Stereo- and neural network-based pedestrian detection. IEEE Transactions on Intelligent Transportation Systems 01, 148-154 (2000)
[2]
Benezeth, Y., Jodoin, P.M., Emile, B., Laurent, H., Rosenberger, C.: Human Detection with a Multi-sensors Stereovision System. In: Elmoataz, A., Lezoray, O., Nouboud, F., Mammass, D., Meunier, J. (eds.) ICISP 2010. LNCS, vol. 6134, pp. 228-235. Springer, Heidelberg (2010)
[3]
Harville, M.: Stereo person tracking with adaptive plan-view templates of height and occupancy statistics. Image and Vision Computing 22, 127-142 (2004)
[4]
Muoz-Salinas, R., Aguirre, E., Garca-Silvente, M.: People detection and tracking using stereo vision and color. Image Vision Comput. 25, 995-1007 (2007)
[5]
Kelly, P., O'Connor, N.E., Smeaton, A.F.: Pedestrian detection in uncontrolled environments using stereo and biometric information. In: Proceedings of the 4th ACM International Workshop on Video Surveillance and Sensor Networks. ACM, Santa Barbara (2006)
[6]
Kelly, P., Noel, E.O.C., Alan, F.S.: Robust pedestrian detection and tracking in crowded scenes. Image Vision Comput. 27, 1445-1458 (2009)
[7]
Hou, Y.-L., Pang, G.K.H.: Human Detection in Crowded Scenes. In: IEEE International Conference on Image Processing (2010)
[8]
Birchfield, S.: Source code of the klt feature tracker (2006), http://www.ces.clemson.edu/~stb/klt/
[9]
Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: IEEE Conference on Computer Vision and Pattern Recognition, vol. 1, pp. 886-893 (2005)
[10]
Kelly, P., O'Connor, N.E., Smeaton, A.F.: A Framework for Evaluating Stereo-Based Pedestrian Detection Techniques. IEEE Transactions on Circuits and Systems for Video Technology 18, 1163-1167 (2008)

Cited By

View all
  • (2018)Crowd Segmentation Using both Appearance and Stereo InformationJournal of Signal Processing Systems10.1007/s11265-017-1258-290:3(421-432)Online publication date: 1-Mar-2018

Recommendations

Comments

Information & Contributors

Information

Published In

cover image Guide Proceedings
CAIP'11: Proceedings of the 14th international conference on Computer analysis of images and patterns - Volume Part I
August 2011
605 pages
ISBN:9783642236716

Sponsors

  • IAPR: International Association for Pattern Recognition
  • Vicerrectorado de Investigación, Universidad de Sevilla: Vicerrectorado de Investigación, Universidad de Sevilla
  • Ministerio de Ciencia e Innovación, Spain
  • Escuela Técnica superier de Ingeniería Informática, Universidad de Seville, Spain: Escuela Técnica superier de Ingeniería Informática, Universidad de Seville, Spain
  • Department of Applied Mathematics I, University of Seville, Spain: Department of Applied Mathematics I, University of Seville, Spain

Publisher

Springer-Verlag

Berlin, Heidelberg

Publication History

Published: 29 August 2011

Author Tags

  1. block-based implicit shape model
  2. crowd segmentation
  3. disparity
  4. stereo vision

Qualifiers

  • Article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 16 Jan 2025

Other Metrics

Citations

Cited By

View all
  • (2018)Crowd Segmentation Using both Appearance and Stereo InformationJournal of Signal Processing Systems10.1007/s11265-017-1258-290:3(421-432)Online publication date: 1-Mar-2018

View Options

View options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media