Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.5555/2039901.2039905guideproceedingsArticle/Chapter ViewAbstractPublication PagesConference Proceedingsacm-pubtype
Article

Moving towards adaptive search in digital libraries

Published: 15 June 2009 Publication History

Abstract

Search applications have become very popular over the last two decades, one of the main drivers being the advent of the Web. Nevertheless, searching on the Web is very different to searching on smaller, often more structured collections such as digital libraries, local Web sites, and intranets. One way of helping the searcher locating the right information for a specific information need in such a collection is by providing well-structured domain knowledge to assist query modification and navigation. There are two main challenges which we will both address in this chapter: acquiring the domain knowledge and adapting it automatically to the specific interests of the user community. We will outline how in digital libraries a domain model can automatically be acquired using search engine query logs and how it can be continuously updated using methods resembling ant colony behaviour.

References

[1]
Agosti, M., Cisco, D., Di Nunzio, G.M., Masiero, I., Melucci, M.: i-TEL-u: A Query Suggestion Tool for Integrating Heterogeneous Contexts in a Digital Library. In: Lalmas, M., Jose, J., Rauber, A., Sebastiani, F., Frommholz, I. (eds.) ECDL 2010. LNCS, vol. 6273, pp. 397-400. Springer, Heidelberg (2010).
[2]
Agosti, M., Crivellari, F., Di Nunzio, G.M., Ioannidis, Y., Stamatogiannakis, L., Triantafillidi, M.-L., Vayanou, M.: Report on Search Engines and HTTP Log Analysis. Technical report TELplus D5.2, TELplus Project (2009).
[3]
Albakour, M.-D., Kruschwitz, U., Lucas, S.: Sentence-level attachment prediction. In: Cunningham, H., Hanbury, A., Rüger, S. (eds.) IRFC 2010. LNCS, vol. 6107, pp. 6-19. Springer, Heidelberg (2010).
[4]
Albakour, M.-D., Kruschwitz, U., Nanas, N., Kim, Y., Song, D., Fasli, M., De Roeck, A.: AutoEval: An evaluation methodology for evaluating query suggestions using query logs. In: Clough, P., Foley, C., Gurrin, C., Jones, G.J.F., Kraaij, W., Lee, H., Mudoch, V. (eds.) ECIR 2011. LNCS, vol. 6611, pp. 605-610. Springer, Heidelberg (2011).
[5]
Anick, P.: Using Terminological Feedback forWeb Search Refinement - A Log-based Study. In: Proceedings of the 26th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, Toronto, Canada, pp. 88-95 (2003).
[6]
Baeza-Yates, R., Saint-Jean, F.: A Three Level Search Engine Index Based in Query Log Distribution. In: Nascimento, M.A., de Moura, E.S., Oliveira, A.L. (eds.) SPIRE 2003. LNCS, vol. 2857, pp. 56-65. Springer, Heidelberg (2003).
[7]
Baeza-Yates, R., Tiberi, A.: Extracting semantic relations from query logs. In: Proceeding of the 13th ACM SIGKDD International Conference on Knowledge Discovery in Data Mining, San Jose, California, pp. 76-85 (2007).
[8]
Baraglia, R., Castillo, C., Donato, D., Nardini, F.M., Perego, R., Silvestri, F.: The Effects of Time on Query Flow Graph-based Models for Query Suggestion. In: Proceedings of RIAO 2010, Paris (2010).
[9]
Belkin, N.J.: Some(what) grand challenges for information retrieval. SIGIR Forum 42(1), 47-54 (2008).
[10]
Berghaus, B., Mandl, T., Womser-Hacker, C., Kluck, M.: An entry vocabulary module for a political science test collection. In: Business Information Systems. Lecture Notes in Business Information Processing, pp. 1-11 (2008).
[11]
Boldi, P., Bonchi, F., Castillo, C., Donato, D., Vigna, S.: Query suggestions using query-flow graphs. In: Proceedings of the 2009 Workshop on Web Search Click Data (WSCD 2009), pp. 56-63 (2009).
[12]
Brusilovsky, P., Cassel, L., Delcambre, L., Fox, E., Furuta, R., Garcia, D., Shipman, F., Bogen, P., Yudelson, M.: Enhancing digital libraries with social navigation: The case of ensemble. In: Lalmas, M., Jose, J., Rauber, A., Sebastiani, F., Frommholz, I. (eds.) ECDL 2010. LNCS, vol. 6273, pp. 116-123. Springer, Heidelberg (2010).
[13]
Callison-Burch, C.: Fast, cheap, and creative: Evaluating translation quality using Amazon's Mechanical Turk. In: Proceedings of the 2009 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 286-295. Association for Computational Linguistics (2009).
[14]
Chau, M., Fang, X., Sheng, O.R.L.: Analysis of the Query Logs of a Web Site Search Engine. Journal of the American Society for Information Science and Technology (JASIST) 56(13), 1363-1376 (2005).
[15]
Dignum, S., Kruschwitz, U., Fasli, M., Kim, Y., Song, D., Cervino, U., De Roeck, A.: Incorporating Seasonality into Search Suggestions Derived from Intranet Query Logs. In: Proceedings of the IEEE/WIC/ACM International Conferences on Web Intelligence (WI 2010), Toronto, pp. 425-430 (2010).
[16]
Fonseca, B.M., Golgher, P.B., de Moura, E.S., Pôssas, B., Ziviani, N.: Discovering search engine related queries using association rules. Journal of Web Engineering 2(4), 215-227 (2004).
[17]
Fonseca, B.M., Golgher, P.B., deMoura, E.S., Ziviani, N.: Using association rules to discover search engines related queries. In: Proceedings of the First Latin American Web Congress, pp. 66-71 (2003).
[18]
Gey, F.C., Buckland, M., Chen, A., Larson, R.R.: Entry vocabulary - a technology to enhance digital search. In: Proceedings of the First International Conference on Human Language Technology (2001).
[19]
Ghorab, M.R., Leveling, J., Zhou, D., Jones, G.J.F., Wade, V.: Identifying common user behaviour in multilingual search logs. In: Peters, C., Di Nunzio, G.M., Kurimo, M., Mostefa, D., Penas, A., Roda, G. (eds.) CLEF 2009. LNCS, vol. 6241, pp. 518-525. Springer, Heidelberg (2010).
[20]
Göker, A., He, D.: Analysing web search logs to determine session boundaries for user-oriented learning. In: Brusilovsky, P., Stock, O., Strapparava, C. (eds.) AH 2000. LNCS, vol. 1892, pp. 319-322. Springer, Heidelberg (2000).
[21]
Hawking, D.: Enterprise Search. In: Baeza-Yates, R., Ribeiro-Neto, B. (eds.) Modern Information Retrieval, 2nd edn., pp. 641-683. Addison-Wesley, Harlow (2011).
[22]
Jansen, B.J., Spink, A., Blakely, C., Koshman, S.: Defining a session on Web search engines. Journal of the American Society for Information Science and Technology (JASIST) 58(6), 862-871 (2007).
[23]
Jansen, B.J., Spink, A., Koshman, S.: Web Server Interaction with the Dogpile.com Metasearch Engine. Journal of the American Society for Information Science and Technology (JASIST) 58(5), 744-755 (2007).
[24]
Jansen, J., Spink, A., Taksa, I. (eds.): Handbook of Research on Web Log Analysis. IGI (2008).
[25]
Joachims, T., Granka, L., Pan, B., Hembrooke, H., Gay, G.: Accurately interpreting clickthrough data as implicit feedback. In: Proceedings of the 28th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, Salvador, Brazil, pp. 154-161 (2005).
[26]
Joachims, T., Radlinski, F.: Search engines that learn from implicit feedback. IEEE Computer 40(8), 34-40 (2007).
[27]
Jones, R., Klinkner, K.L.: Beyond the session timeout: automatic hierarchical segmentation of search topics in query logs. In: Proceeding of the 17th ACM Conference on Information and Knowledge Management (CIKM 2008), pp. 699-708 (2008).
[28]
Jones, R., Rey, B., Madani, O., Greiner, W.: Generating Query Substitutions. In: Proceedings of the 15th International World Wide Web Conference (WWW 2006), Edinburgh, pp. 387-396 (2006).
[29]
Kelly, D., Gyllstrom, K., Bailey, E.W.: A comparison of query and term suggestion features for interactive searching. In: Proceedings of the 32nd Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, Boston, pp. 371-378 (2009).
[30]
Kruschwitz, U.: An Adaptable Search System for Collections of Partially Structured Documents. IEEE Intelligent Systems 18(4), 44-52 (2003).
[31]
Kruschwitz, U.: Intelligent Document Retrieval: Exploiting Markup Structure. The Information Retrieval Series, vol. 17. Springer, Heidelberg (2005).
[32]
Lungley, D., Kruschwitz, U.: Automatically maintained domain knowledge: Initial findings. In: Boughanem, M., Berrut, C., Mothe, J., Soule-Dupuy, C. (eds.) ECIR 2009. LNCS, vol. 5478, pp. 739-743. Springer, Heidelberg (2009).
[33]
Manning, C., Prabhakar, R., Schütze, H.: Introduction to Information Retrieval. Cambridge University Press, Cambridge (2008).
[34]
Markey, K.: Twenty-five years of end-user searching, Part 1: Research findings. Journal of the American Society for Information Science and Technology (JASIST) 58(8), 1071-1081 (2007).
[35]
Mat-Hassan, M., Levene, M.: Associating Search and Navigation Behavior Through Log Analysis. Journal of the American Society for Information Science and Technology (JASIST) 56(9), 913-934 (2005).
[36]
Nanas, N., Roeck, A.: Autopoiesis, the immune system, and adaptive information filtering. Natural Computing: an International Journal 8(2), 387-427 (2009).
[37]
Poblete, B., Baeza-Yates, R.: Query-Sets: Using Implicit Feedback and Query Patterns to Organize Web Documents. In: Proceedings of the 17th International World Wide Web Conference (WWW 2008), Beijing, pp. 41-50 (2008).
[38]
Sanderson, M., Croft, B.: Deriving concept hierarchies from text. In: Proceedings of the 22nd Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, Berkeley, CA, pp. 206-213 (1999).
[39]
Sherman, C.: Why Enterprise Search will never be Google-y. In: Enterprise Search Source-book, pp. 12-13 (2008).
[40]
Silvestri, F.: Mining Query Logs: Turning Search Usage Data into Knowledge. Foundations and Trends in Information Retrieval, vol. 4. Now Publisher (2010).
[41]
Smyth, B., Briggs, P., Coyle, M., O'Mahony, M.: Google shared. A case-study in social search. In: Houben, G.-J., McCalla, G., Pianesi, F., Zancanaro, M. (eds.) UMAP 2009. LNCS, vol. 5535, pp. 283-294. Springer, Heidelberg (2009).
[42]
Snow, R., O'Connor, B., Jurafsky, D., Ng, A.Y.: Cheap and Fast - But is it Good? Evaluating Non-Expert Annotations for Natural Language Tasks. In: Proceedings of the 2008 Conference on Empirical Methods in Natural Language Processing, pp. 254-263. Association for Computational Linguistics (2008).
[43]
Sowa, J.F.: Semantic networks. In: Shapiro, S.C. (ed.) Encyclopedia of Artificial Intelligence, pp. 1493-1511. John Wiley & Sons, Chichester (1992).
[44]
Spink, A., Jansen, B.J.: Web Search: Public Searching of the Web. The Information Science and Knowledge Management Series, vol. 6. Kluwer, Dordrecht (2004).
[45]
Surowiecki, J.: The Wisdom of Crowds. Anchor, New York (2005).
[46]
Teevan, J., Adar, E., Jones, R., Potts, M.A.S.: Information Re-Retrieval: Repeat Queries in Yahoo's Logs. In: Proceedings of the 30th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, Amsterdam, pp. 151-158 (2007).
[47]
Wang, P., Berry, M.W., Yang, Y.: Mining Longitudinal Web Queries: Trends and Patterns. Journal of the American Society for Information Science and Technology (JASIST) 54(8), 743-758 (2003).
[48]
White, M.: Making Search Work: Implementing Web, Intranet and Enterprise Search. Facet Publishing (2007).
[49]
White, R.W., Bilenko, M., Cucerzan, S.: Studying the Use of Popular Destinations to Enhance Web Search Interaction. In: Proceedings of the 30th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, Amsterdam, pp. 159-166 (2007).
[50]
White, R.W., Ruthven, I.: A Study of Interface Support Mechanisms for Interactive Information Retrieval. Journal of the American Society for Information Science and Technology (JASIST) 57(7), 933-948 (2006).
[51]
Widdows, D., Dorow, B.: A Graph Model for Unsupervised Lexical Acquisition and Automatic Word-Sense Disambiguation. In: Proceedings of the 19th Conference on Computational Linguistics (COLING), Taipei, Taiwan, pp. 1093-1099 (2002).

Cited By

View all
  • (2019)Automatically structuring domain knowledge from textInformation Processing and Management: an International Journal10.1016/j.ipm.2011.07.00248:3(552-568)Online publication date: 9-Dec-2019
  • (2017)A semantic-grained perspective of latent knowledge modelingInformation Fusion10.1016/j.inffus.2016.11.00336:C(52-67)Online publication date: 1-Jul-2017
  • (2015)Profile-Based Summarisation for Web Site NavigationACM Transactions on Information Systems10.1145/269966133:1(1-39)Online publication date: 17-Feb-2015
  • Show More Cited By

Recommendations

Comments

Information & Contributors

Information

Published In

cover image Guide Proceedings
NLP4DL'09/AT4DL'09: Proceedings of the 2009 international conference on Advanced language technologies for digital libraries
June 2009
171 pages
ISBN:9783642231599

Publisher

Springer-Verlag

Berlin, Heidelberg

Publication History

Published: 15 June 2009

Qualifiers

  • Article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 27 Dec 2024

Other Metrics

Citations

Cited By

View all
  • (2019)Automatically structuring domain knowledge from textInformation Processing and Management: an International Journal10.1016/j.ipm.2011.07.00248:3(552-568)Online publication date: 9-Dec-2019
  • (2017)A semantic-grained perspective of latent knowledge modelingInformation Fusion10.1016/j.inffus.2016.11.00336:C(52-67)Online publication date: 1-Jul-2017
  • (2015)Profile-Based Summarisation for Web Site NavigationACM Transactions on Information Systems10.1145/269966133:1(1-39)Online publication date: 17-Feb-2015
  • (2011)Applying web usage mining for adaptive intranet navigationProceedings of the Second international conference on Multidisciplinary information retrieval facility10.5555/2018142.2018156(118-133)Online publication date: 6-Jun-2011

View Options

View options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media