Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.5555/2050728.2050749guideproceedingsArticle/Chapter ViewAbstractPublication PagesConference Proceedingsacm-pubtype
Article

Using tag recommendations to homogenize folksonomies in microblogging environments

Published: 06 October 2011 Publication History

Abstract

Microblogging applications such as Twitter are experiencing tremendous success. Twitter users use hashtags to categorize posted messages which aim at bringing order to the chaos of the Twittersphere. However, the percentage of messages including hashtags is very small and the used hashtags are very heterogeneous as hashtags may be chosen freely and may consist of any arbitrary combination of characters. This heterogeneity and the lack of use of hashtags lead to significant drawbacks in regards of the search functionality as messages are not categorized in a homogeneous way. In this paper we present an approach for the recommendation of hashtags suitable for the tweet the user currently enters which aims at creating a more homogeneous set of hashtags. Furthermore, users are encouraged to using hashtags as they are provided with suitable recommendations for hashtags.

References

[1]
Adomavicius, G., Tuzhilin, A.: Toward the next generation of recommender systems: A survey of the state-of-the-art and possible extensions. IEEE Transactions on Knowledge and Data Engineering 17(6), 734-749 (2005).
[2]
Ames, M., Naaman, M.: Why we tag: motivations for annotation in mobile and online media. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, CHI 2007, pp. 971-980. ACM, New York (2007).
[3]
Balabanovic, M., Shoham, Y.: Fab: content-based, collaborative recommendation. Commun. ACM 40, 66-72 (1997).
[4]
Boyd, D., Golder, S., Lotan, G.: Tweet, tweet, retweet: Conversational aspects of retweeting on twitter. In: HICSS, pp. 1-10. IEEE Computer Society, Los Alamitos (1899).
[5]
Chen, J., Nairn, R., Nelson, L., Bernstein, M., Chi, E.: Short and tweet: experiments on recommending content from information streams. In: Proceedings of the 28th International Conference on Human Factors in Computing Systems, pp. 1185-1194. ACM, New York (2010).
[6]
Garg, N., Weber, I.: Personalized, interactive tag recommendation for flickr. In: Proceedings of the 2008 ACM Conference on Recommender Systems, RecSys 2008, pp. 67-74. ACM, New York (2008).
[7]
Gassler, W., Zangerle, E., Specht, G.: The Snoopy Concept: Fighting Heterogeneity in Semistructured and Collaborative Information Systems by using Recommendations. In: The 2011 International Conference on Collaboration Technologies and Systems (CTS 2011), Philadelphia, PE (May 2011).
[8]
Hannon, J., Bennett, M., Smyth, B.: Recommending twitter users to follow using content and collaborative filtering approaches. In: RecSys 2010: Proceedings of the Fourth ACM Conference on Recommender Systems, pp. 199-206. ACM, New York (2010).
[9]
Honeycutt, C., Herring, S.C.: Beyond Microblogging: Conversation and Collaboration via Twitter. In: HICSS, pp. 1-10. IEEE Computer Society, Los Alamitos (2009).
[10]
Huberman, B., Romero, D., Wu, F.: Social networks that matter: Twitter under the microscope. First Monday 14(1), 8 (2009).
[11]
Jäschke, R., Marinho, L., Hotho, A., Schmidt-Thieme, L., Stumme, G.: Tag Recommendations in Folksonomies. In: Kok, J., Koronacki, J., Lopez de Mantaras, R., Matwin, S., Mladenič, D., Skowron, A. (eds.) PKDD 2007. LNCS (LNAI), vol. 4702, pp. 506-514. Springer, Heidelberg (2007).
[12]
Java, A., Song, X., Finin, T., Tseng, B.: Why we twitter: understanding microblogging usage and communities. In: Proceedings of the 9th WebKDD and 1st SNAKDD 2007 Workshop on Web Mining and Social Network Analysis, pp. 56-65. ACM, New York (2007).
[13]
Krishnamurthy, B., Gill, P., Arlitt, M.: A few chirps about twitter. In: Proceedings of the First Workshop on Online Social Networks, pp. 19-24. ACM, New York (2008).
[14]
Kwak, H., Lee, C., Park, H., Moon, S.: What is Twitter, a social network or a news media? In: Proceedings of the 19th International Conference on World Wide Web, pp. 591-600. ACM, New York (2010).
[15]
Lipczak, M., Milios, E.: Learning in efficient tag recommendation. In: Proceedings of the Fourth ACM Conference on Recommender Systems, RecSys 2010, pp. 167- 174. ACM, New York (2010).
[16]
Marlow, C., Naaman, M., Boyd, D., Davis, M.: HT06, tagging paper, taxonomy, Flickr, academic article, to read. In: Proceedings of the Seventeenth Conference on Hypertext and Hypermedia, HT 2006, pp. 31-40. ACM, New York (2006).
[17]
Pazzani, M., Billsus, D.: Content-Based Recommendation Systems. In: Brusilovsky, P., Kobsa, A., Nejdl, W. (eds.) Adaptive Web 2007. LNCS, vol. 4321, pp. 325-341. Springer, Heidelberg (2007).
[18]
Phelan, O., McCarthy, K., Smyth, B.: Using twitter to recommend real-time topical news. In: Proceedings of the Third ACM Conference on Recommender Systems, pp. 385-388. ACM, New York (2009).
[19]
Rae, A., Sigurbjörnsson, B., van Zwol, R.: Improving tag recommendation using social networks. In: Adaptivity, Personalization and Fusion of Heterogeneous Information, RIAO 2010, Paris, France, pp. 92-99. Le Centre de Hautes Etudes Internationales d'Informatique Documentaire (2010).
[20]
Resnick, P., Varian, H.: Recommender systems. Communications of the ACM 40(3), 58 (1997).
[21]
Romero, D.M., Meeder, B., Kleinberg, J.M.: Differences in the mechanics of information diffusion across topics: idioms, political hashtags, and complex contagion on twitter. In: Srinivasan, S., Ramamritham, K., Kumar, A., Ravindra, M.P., Bertino, E., Kumar, R. (eds.) WWW, pp. 695-704. ACM, New York (2011).
[22]
Sen, S., Vig, J., Riedl, J.: Tagommenders: connecting users to items through tags. In: Proceedings of the 18th International Conference on World Wide Web, WWW 2009, pp. 671-680. ACM, New York (2009).
[23]
Sigurbjörnsson, B., Van Zwol, R.: Flickr tag recommendation based on collective knowledge. In: Proceeding of the 17th International Conference on World Wide Web, pp. 327-336. ACM, New York (2008).
[24]
Tatu, M., Srikanth, M., D'Silva, T.: RSDC 2008: Tag Recommendations using Bookmark Content. In: Workshop at 18th Europ. Conf. on Machine Learning (ECML 2008)/11th Europ. Conf. on Principles and Practice of Knowledge Discovery in Databases, PKDD 2008 (2008).
[25]
Ye, S., Wu, S.F.: Measuring Message Propagation and Social Influence on Twitter. com. In: Bolc, L., Makowski, M., Wierzbicki, A. (eds.) SocInfo 2010. LNCS, vol. 6430, pp. 216-231. Springer, Heidelberg (2010).

Cited By

View all

Recommendations

Comments

Information & Contributors

Information

Published In

cover image Guide Proceedings
SocInfo'11: Proceedings of the Third international conference on Social informatics
October 2011
339 pages
ISBN:9783642247033
  • Editors:
  • Anwitaman Datta,
  • Aixin Sun,
  • Stuart Shulman,
  • Baihua Zheng,
  • Ee-Peng Lim

Sponsors

  • Air Force Office of Scientific Research/Asian Office of Aerospace R&D
  • Media Development Authority Singapore: Media Development Authority Singapore
  • US Air Force Office of Scientific Research: US Air Force Office of Scientific Research
  • Lee Foundation
  • The Singapore Internet Research Center: The Singapore Internet Research Center

Publisher

Springer-Verlag

Berlin, Heidelberg

Publication History

Published: 06 October 2011

Qualifiers

  • Article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 14 Jan 2025

Other Metrics

Citations

Cited By

View all
  • (2018)EnTagRec ++Empirical Software Engineering10.1007/s10664-017-9533-123:2(800-832)Online publication date: 1-Apr-2018
  • (2018)Semantic tagging and linking of software engineering social contentAutomated Software Engineering10.1007/s10515-014-0146-223:2(147-190)Online publication date: 26-Dec-2018
  • (2015)Synonym suggestion for tags on stack overflowProceedings of the 2015 IEEE 23rd International Conference on Program Comprehension10.5555/2820282.2820296(94-103)Online publication date: 16-May-2015
  • (2015)Analysis of the Impact of a Tag Recommendation System in a Real-World FolksonomyACM Transactions on Intelligent Systems and Technology10.1145/27430267:1(1-27)Online publication date: 22-Sep-2015
  • (2014)#nowplaying Music DatasetProceedings of the First International Workshop on Internet-Scale Multimedia Management10.1145/2661714.2661719(21-26)Online publication date: 7-Nov-2014
  • (2013)Tag recommendation in software information sitesProceedings of the 10th Working Conference on Mining Software Repositories10.5555/2487085.2487140(287-296)Online publication date: 18-May-2013
  • (2013)Towards an Expressive and Scalable Twitter's Users ProfilesProceedings of the 2013 IEEE/WIC/ACM International Joint Conferences on Web Intelligence (WI) and Intelligent Agent Technologies (IAT) - Volume 0110.1109/WI-IAT.2013.15(101-108)Online publication date: 17-Nov-2013

View Options

View options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media