Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.5555/2133036.2133097acmconferencesArticle/Chapter ViewAbstractPublication PagessodaConference Proceedingsconference-collections
research-article

Known algorithms on graphs of bounded treewidth are probably optimal

Published: 23 January 2011 Publication History

Abstract

We obtain a number of lower bounds on the running time of algorithms solving problems on graphs of bounded treewidth. We prove the results under the Strong Exponential Time Hypothesis of Impagliazzo and Paturi. In particular, assuming that SAT cannot be solved in (2 - ∈)nmO(1) time, we show that for any ∈ > 0;
• Independent Set cannot be solved in time (2 − ε)tw(G) |V(G)|O(1),
• Dominating Set cannot be solved in time (3 − ε)tw(G) |V(G)|O(1),
• Max Cut cannot be solved in time (2 − ε)tw(G) |V(G)|O(1),
• Odd Cycle Transversal cannot be solved in time (3 − ε)tw(G) |V(G)|O(1),
• For any q ≥ 3, q-Coloring cannot be solved in time (q − ε)tw(G) |V(G)|O(1),
• Partition Into Triangles cannot be solved in time (2 − ε)tw(G) |V(G)|O(1).
Our lower bounds match the running times for the best known algorithms for the problems, up to the ε in the base.

References

[1]
J. Alber and R. Niedermeier, Improved tree decomposition based algorithms for domination-like problems, in LATIN, 2002, pp. 613--628.
[2]
A. Björklund, T. Husfeldt, P. Kaski, and M. Koivisto, Fourier meets möbius: fast subset convolution, in STOC, 2007, pp. 67--74.
[3]
C. Calabro, R. Impagliazzo, and R. Paturi, The complexity of satisfiability of small depth circuits, in IWPEC, 2009, pp. 75--85.
[4]
J. Chen, X. Huang, I. A. Kanj, and G. Xia, On the computational hardness based on linear FPT-reductions, J. Comb. Optim., 11 (2006), pp. 231--247.
[5]
J. Chen, X. Huang, I. A. Kanj, and G. Xia, Strong computational lower bounds via parameterized complexity, J. Comput. Syst. Sci., 72 (2006), pp. 1346--1367.
[6]
E. D. Demaine, F. V. Fomin, M. T. Hajiaghayi, and D. M. Thilikos, Subexponential parameterized algorithms on bounded-genus graphs and -minor-free graphs, J. ACM, 52 (2005), pp. 866--893.
[7]
E. D. Demaine and M. Hajiaghayi, The bidimensionality theory and its algorithmic applications, Comput. J., 51 (2008), pp. 292--302.
[8]
D. Eppstein, Diameter and treewidth in minor-closed graph families, Algorithmica, 27 (2000), pp. 275--291.
[9]
S. Fiorini, N. Hardy, B. A. Reed, and A. Vetta, Planar graph bipartization in linear time, Discrete Applied Mathematics, 156 (2008).
[10]
J. Flum and M. Grohe, Parameterized Complexity Theory, Springer, Berlin, 2006.
[11]
F. Fomin, P. Golovach, D. Lokshtanov, and S. Saurabh, Algorithmic lower bounds for problems parameterized by clique-width, in SODA, 2010, pp. 493--502.
[12]
F. V. Fomin, S. Gaspers, S. Saurabh, and A. A. Stepanov, On two techniques of combining branching and treewidth, Algorithmica, 54 (2009), pp. 181--207.
[13]
R. Impagliazzo and R. Paturi, On the complexity of k-sat, J. Comput. Syst. Sci., 62 (2001), pp. 367--375.
[14]
R. Impagliazzo, R. Paturi, and F. Zane, Which problems have strongly exponential complexity?, J. Comput. Syst. Sci., 63 (2001), pp. 512--530.
[15]
J. Kleinberg and E. Tardos, Algorithm Design, Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 2005.
[16]
D. Lokshtanov, D. Marx, and S. Saurabh, Known algorithms on graphs of bounded treewidth are probably optimal, CoRR, abs/1007.5450 (2010).
[17]
D. Lokshtanov, S. Saurabh, and S. Sikdar, Simpler parameterized algorithm for oct, in IWOCA, 2009, pp. 380--384.
[18]
D. Marx, Can you beat treewidth?, in FOCS, 2007, pp. 169--179.
[19]
D. Marx, On the optimality of planar and geometric approximation schemes, in FOCS, 2007, pp. 338--348.
[20]
D. Mölle, S. Richter, and P. Rossmanith, Enumerate and expand: Improved algorithms for connected vertex cover and tree cover, Theory Comput. Syst., 43 (2008), pp. 234--253.
[21]
R. Niedermeier, Invitation to fixed-parameter algorithms, vol. 31 of Oxford Lecture Series in Mathematics and its Applications, Oxford University Press, Oxford, 2006.
[22]
M. Pătraşcu and R. Williams, On the possibility of faster sat algorithms, in Proc. 21st ACM/SIAM Symposium on Discrete Algorithms (SODA), 2010. To appear.
[23]
B. Reed, K. Smith, and A. Vetta, Finding odd cycle transversals, Operations Research Letters, 32 (2004), pp. 299--301.
[24]
A. D. Scott and G. B. Sorkin, Linear-programming design and analysis of fast algorithms for max 2-csp, Discrete Optimization, 4 (2007), pp. 260--287.
[25]
A. Takahashi, S. Ueno, and Y. Kajitani, Mixed searching and proper-path-width, Theor. Comput. Sci., 137 (1995), pp. 253--268.
[26]
J. A. Telle and A. Proskurowski, Practical algorithms on partial k-trees with an application to domination-like problems, in WADS, 1993, pp. 610--621.
[27]
D. M. Thilikos, M. J. Serna, and H. L. Bodlaender, Cutwidth i: A linear time fixed parameter algorithm, J. Algorithms, 56 (2005), pp. 1--24.
[28]
J. M. M. van Rooij, H. L. Bodlaender, and P. Rossmanith, Dynamic programming on tree decompositions using generalised fast subset convolution, in ESA, 2009, pp. 566--577.
[29]
J. M. M. van Rooij, J. Nederlof, and T. C. van Dijk, Inclusion/exclusion meets measure and conquer, in ESA, 2009, pp. 554--565.

Cited By

View all
  • (2021)The (Coarse) Fine-Grained Structure of NP-Hard SAT and CSP ProblemsACM Transactions on Computation Theory10.1145/349233614:1(1-54)Online publication date: 15-Dec-2021
  • (2019)SETH-based lower bounds for subset sum and bicriteria pathProceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms10.5555/3310435.3310438(41-57)Online publication date: 6-Jan-2019
  • (2019)Edge Bipartization Faster than $$2^k$$2kAlgorithmica10.1007/s00453-017-0319-z81:3(917-966)Online publication date: 1-Mar-2019
  • Show More Cited By

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Conferences
SODA '11: Proceedings of the twenty-second annual ACM-SIAM symposium on Discrete algorithms
January 2011
1785 pages

Sponsors

Publisher

Society for Industrial and Applied Mathematics

United States

Publication History

Published: 23 January 2011

Check for updates

Qualifiers

  • Research-article

Conference

SODA '11
Sponsor:
SODA '11: 22nd ACM-SIAM Symposium on Discrete Algorithms
January 23 - 25, 2011
California, San Francisco

Acceptance Rates

Overall Acceptance Rate 411 of 1,322 submissions, 31%

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 20 Jan 2025

Other Metrics

Citations

Cited By

View all
  • (2021)The (Coarse) Fine-Grained Structure of NP-Hard SAT and CSP ProblemsACM Transactions on Computation Theory10.1145/349233614:1(1-54)Online publication date: 15-Dec-2021
  • (2019)SETH-based lower bounds for subset sum and bicriteria pathProceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms10.5555/3310435.3310438(41-57)Online publication date: 6-Jan-2019
  • (2019)Edge Bipartization Faster than $$2^k$$2kAlgorithmica10.1007/s00453-017-0319-z81:3(917-966)Online publication date: 1-Mar-2019
  • (2018)A tight lower bound for counting hamiltonian cycles via matrix rankProceedings of the Twenty-Ninth Annual ACM-SIAM Symposium on Discrete Algorithms10.5555/3174304.3175340(1080-1099)Online publication date: 7-Jan-2018
  • (2018)More consequences of falsifying SETH and the orthogonal vectors conjectureProceedings of the 50th Annual ACM SIGACT Symposium on Theory of Computing10.1145/3188745.3188938(253-266)Online publication date: 20-Jun-2018
  • (2018)Known Algorithms on Graphs of Bounded Treewidth Are Probably OptimalACM Transactions on Algorithms10.1145/317044214:2(1-30)Online publication date: 16-Apr-2018
  • (2018)Fast Hamiltonicity Checking Via Bases of Perfect MatchingsJournal of the ACM10.1145/314822765:3(1-46)Online publication date: 13-Mar-2018
  • (2017)Hitting forbidden subgraphs in graphs of bounded treewidthInformation and Computation10.1016/j.ic.2017.04.009256:C(62-82)Online publication date: 1-Oct-2017
  • (2016)Tight conditional lower bounds for counting perfect matchings on graphs of bounded treewidth, cliquewidth, and genusProceedings of the twenty-seventh annual ACM-SIAM symposium on Discrete algorithms10.5555/2884435.2884548(1650-1669)Online publication date: 10-Jan-2016
  • (2016)Tight Lower Bound for the Channel Assignment ProblemACM Transactions on Algorithms10.1145/287650512:4(1-19)Online publication date: 2-Sep-2016
  • Show More Cited By

View Options

Login options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media