Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.5555/2396194.2396201guideproceedingsArticle/Chapter ViewAbstractPublication PagesConference Proceedingsacm-pubtype
Article

Comprehensive triangular decomposition

Published: 16 September 2007 Publication History

Abstract

We introduce the concept of comprehensive triangular decomposition (CTD) for a parametric polynomial system F with coefficients in a field. In broad words, this is a finite partition of the the parameter space into regions, so that within each region the "geometry" (number of irreducible components together with their dimensions and degrees) of the algebraic variety of the specialized system F(u) is the same for all values u of the parameters.
We propose an algorithm for computing the CTD of F. It relies on a procedure for solving the following set theoretical instance of the coprime factorization problem. Given a family of constructible sets A1,..., As, compute a family B1,..., Bt of pairwise disjoint constructible sets, such that for all 1 ≤ is the set Ai writes as a union of some of the B1,...,Bt.
We report on an implementation of our algorithm computing CTDs, based on the RegularChains library in MAPLE. We provide comparative benchmarks with MAPLE implementations of related methods for solving parametric polynomial systems. Our results illustrate the good performances of our CTD code.

References

[1]
Aubry, P., Lazard, D., Moreno Maza, M.: On the theories of triangular sets. J. Symb. Comp. 28(1-2), 105-124 (1999).
[2]
Bernstein, D.J.: Factoring into coprimes in essentially linear time. J. Algorithms 54(1), 1-30 (2005).
[3]
Boulier, F., Lemaire, F., Moreno Maza, M.: Well known theorems on triangular systems and the D5 principle. In: Proc. of Transgressive Computing 2006, Granada, Spain (2006).
[4]
Caviness, B., Johnson, J. (eds.): Quantifier Elimination and Cylindical Algebraic Decomposition, Texts and Mongraphs in Symbolic Computation. Springer, Heidelberg (1998).
[5]
Chen, F., Wang, D. (eds.): Geometric Computation. Lecture Notes Series on Computing, vol. 11. World Scientific Publishing Co., Singapore, New Jersey (2004).
[6]
Chou, S.C., Gao, X.S.: Computations with parametric equations. In: Proc. ISAAC'91, Bonn, Germany, pp. 122-127 (1991).
[7]
Chou, S.C., Gao, X.S.: Solving parametric algebraic systems. In: Proc. ISSAC'92, Berkeley, California, pp. 335-341 (1992).
[8]
Dahan, X., Moreno Maza, M., Schost, É., Xie, Y.: On the complexity of the D5 principle. In: Proc. of Transgressive Computing 2006, Granada, Spain (2006).
[9]
Duval, D.: Algebraic Numbers: an Example of Dynamic Evaluation. J. Symb. Comp. 18(5), 429-446 (1994).
[10]
Gómez Díaz, T.: Quelques applications de l'évaluation dynamique. PhD thesis, Université de Limoges (1994).
[11]
Kalkbrener, M.: A generalized euclidean algorithm for computing triangular representations of algebraic varieties. J. Symb. Comp. 15, 143-167 (1993).
[12]
Lazard, D., Rouillier, F.: Solving parametric polynomial systems. Technical Report 5322, INRIA (2004).
[13]
Manubens, M., Montes, A.: Improving dispgb algorithm using the discriminant ideal (2006).
[14]
Montes, A.: A new algorithm for discussing gröbner bases with parameters. J. Symb. Comput. 33(2), 183-208 (2002).
[15]
Moreno Maza, M.: On triangular decompositions of algebraic varieties. Technical Report TR 4/99, NAG Ltd, Oxford, UK (1999), http://www.csd.uwo.ca/˜moreno
[16]
Samuel, P., Zariski, O.: Commutative algebra. D. Van Nostrand Company, INC (1967).
[17]
Suzuki, A., Sato, Y.: A simple algorithm to compute comprehensive Gröbner bases. In: Proc. ISSAC'06, pp. 326-331. ACM Press, New York (2006).
[18]
The SymbolicData Project (2000-2006), http://www.SymbolicData.org
[19]
Wang, D.M.: Computing triangular systems and regular systems. Journal of Symbolic Computation 30(2), 221-236 (2000).
[20]
Wang, D.M.: Decomposing polynomial systems into simple systems. J. Symb. Comp. 25(3), 295-314 (1998).
[21]
Wang, D.M.: Elimination Methods. Springer, Wein, New York (2000).
[22]
Weispfenning, V.: Comprehensive grobner bases. J. Symb. Comp. 14, 1-29 (1992).
[23]
Weispfenning, V.: Canonical comprehensive grobner bases. In: ISSAC 2002, pp. 270-276. ACM Press, New York (2002).
[24]
Wu, W.T.: A zero structure theorem for polynomial equations solving. MM Research Preprints 1, 2-12 (1987).
[25]
Wu, W.T.: On a projection theorem of quasi-varieties in elimination theory. MM Research Preprints 4, 40-53 (1989).
[26]
Yang, L., Hou, X.R., Xia, B.C.: A complete algorithm for automated discovering of a class of inequality-type theorem. Science in China, Series E 44(6), 33-49 (2001).

Cited By

View all
  • (2016)Quantifier elimination by cylindrical algebraic decomposition based on regular chainsJournal of Symbolic Computation10.1016/j.jsc.2015.11.00875:C(74-93)Online publication date: 1-Jul-2016
  • (2015)Optimizing a Parametric Linear Function over a Non-compact Real Algebraic VarietyProceedings of the 2015 ACM International Symposium on Symbolic and Algebraic Computation10.1145/2755996.2756666(205-212)Online publication date: 24-Jun-2015
  • (2015)Regular Chains under Linear Changes of Coordinates and ApplicationsProceedings of the 17th International Workshop on Computer Algebra in Scientific Computing - Volume 930110.1007/978-3-319-24021-3_3(30-44)Online publication date: 14-Sep-2015
  • Show More Cited By
  1. Comprehensive triangular decomposition

    Recommendations

    Comments

    Information & Contributors

    Information

    Published In

    cover image Guide Proceedings
    CASC'07: Proceedings of the 10th international conference on Computer Algebra in Scientific Computing
    September 2007
    459 pages
    ISBN:3540751866
    • Editors:
    • Victor G. Ganzha,
    • Ernst W. Mayr,
    • Evgenii V. Vorozhtsov

    Publisher

    Springer-Verlag

    Berlin, Heidelberg

    Publication History

    Published: 16 September 2007

    Qualifiers

    • Article

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)0
    • Downloads (Last 6 weeks)0
    Reflects downloads up to 18 Feb 2025

    Other Metrics

    Citations

    Cited By

    View all
    • (2016)Quantifier elimination by cylindrical algebraic decomposition based on regular chainsJournal of Symbolic Computation10.1016/j.jsc.2015.11.00875:C(74-93)Online publication date: 1-Jul-2016
    • (2015)Optimizing a Parametric Linear Function over a Non-compact Real Algebraic VarietyProceedings of the 2015 ACM International Symposium on Symbolic and Algebraic Computation10.1145/2755996.2756666(205-212)Online publication date: 24-Jun-2015
    • (2015)Regular Chains under Linear Changes of Coordinates and ApplicationsProceedings of the 17th International Workshop on Computer Algebra in Scientific Computing - Volume 930110.1007/978-3-319-24021-3_3(30-44)Online publication date: 14-Sep-2015
    • (2014)Quantifier elimination by cylindrical algebraic decomposition based on regular chainsProceedings of the 39th International Symposium on Symbolic and Algebraic Computation10.1145/2608628.2608666(91-98)Online publication date: 23-Jul-2014
    • (2013)An efficient method for computing comprehensive Gröbner basesJournal of Symbolic Computation10.1016/j.jsc.2012.05.01552(124-142)Online publication date: 1-May-2013
    • (2013)Triangular decomposition of semi-algebraic systemsJournal of Symbolic Computation10.1016/j.jsc.2011.12.01449(3-26)Online publication date: 1-Feb-2013
    • (2013)Computing the Limit Points of the Quasi-component of a Regular Chain in Dimension OneProceedings of the 15th International Workshop on Computer Algebra in Scientific Computing - Volume 813610.1007/978-3-319-02297-0_3(30-45)Online publication date: 9-Sep-2013
    • (2012)Algorithms for computing triangular decomposition of polynomial systemsJournal of Symbolic Computation10.1016/j.jsc.2011.12.02347:6(610-642)Online publication date: 1-Jun-2012
    • (2012)Communication-efficient distributed oblivious transferJournal of Computer and System Sciences10.1016/j.jcss.2012.02.00278:4(1142-1157)Online publication date: 1-Jul-2012
    • (2012)Linear complexity of binary sequences derived from Euler quotients with prime-power modulusInformation Processing Letters10.1016/j.ipl.2012.04.011112:14-15(604-609)Online publication date: 1-Aug-2012
    • Show More Cited By

    View Options

    View options

    Figures

    Tables

    Media

    Share

    Share

    Share this Publication link

    Share on social media