Compositional approximate markov chain aggregation for PEPA models
Abstract
References
Recommendations
Pseudo-marginal Markov Chain Monte Carlo for Nonnegative Matrix Factorization
A pseudo-marginal Markov chain Monte Carlo (PMCMC) method is proposed for nonnegative matrix factorization (NMF). The sampler jointly simulates the joint posterior distribution for the nonnegative matrices and the matrix dimensions which indicate the ...
Analyzing Markov chain Monte Carlo output
AbstractMarkov chain Monte Carlo (MCMC) is a sampling‐based method for estimating features of probability distributions. MCMC methods produce a serially correlated, yet representative, sample from the desired distribution. As such it can be difficult to ...
Visual representation of the multivariate correlation structure in a Markov chain. Output analysis that accounts for this multivariate structure is able to more accurately summarize variability in the simulation process. We review the output analysis ...
Comments
Information & Contributors
Information
Published In
Sponsors
- SICSA: The Scottish Informatics and Computer Science Alliance
Publisher
Springer-Verlag
Berlin, Heidelberg
Publication History
Qualifiers
- Article
Contributors
Other Metrics
Bibliometrics & Citations
Bibliometrics
Article Metrics
- 0Total Citations
- 0Total Downloads
- Downloads (Last 12 months)0
- Downloads (Last 6 weeks)0