Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.5555/2554641.2554652guidebooksArticle/Chapter ViewAbstractPublication PagesBookacm-pubtype
chapter

The value-passing calculus

Published: 01 January 2013 Publication History

Abstract

A value-passing calculus is a process calculus in which the contents of communications are values chosen from some data domain, and the propositions appearing in the conditionals are formulas constructed from a logic. Previous studies treat the domain models, as well as the logic theories, as unspecified oracles. The open-ended approach leaves open some fundamental issues unanswered. The paper provides a more formal account of the value-passing calculi. The new treatment is self-contained in that the logic theory a value-passing calculus refers to is formally defined. A value-passing calculus consists of a complete first order theory with an operational model that makes use of the terms and the boolean expressions of the theory. A systematic investigation into the theory of the value-passing calculi is carried out. A particular value-passing calculus, $\mathbb{VPC}$, is shown to be the least expressive among all Turing complete value-passing calculi.

References

[1]
Brookes, S., Hoare, C., Roscoe, A.: A theory of communicating sequential processes. Journal of ACM 31, 560-599 (1984).
[2]
Brookes, S.: A Model of Communicating Sequential Processes. PhD thesis, Oxford University (1983).
[3]
Cutland, N.: Computability: An Introduction to Recursive Function Theory. Cambridge University Press (1980).
[4]
De Nicola, R., Mantanari, U., Vaandrager, F.: Back and forth bisimulations. In: Baeten, J.C.M., Klop, J.W. (eds.) CONCUR 1990. LNCS, vol. 458, pp. 152-165. Springer, Heidelberg (1990).
[5]
Fu, Y., Lu, H.: On the expressiveness of interaction. Theoretical Computer Science 411, 1387-1451 (2010).
[6]
Fischer, M., Rabin, M.: Super-exponential complexity of presburger arithmetic. In: Karp, R. (ed.) Complexity of Computation, pp. 27-41. American Mathematical Society (1974).
[7]
Fu, Y.: Nondeterministic structure of computation (2012).
[8]
Fu, Y.: Theory of interaction (2012).
[9]
Fu, Y., Zhu, H.: The name-passing calculus (2011).
[10]
Gödel, K.: Über formal unentscheidbare sätze der principia mathematica und verwandter systeme. Monatshefte für Mathematik und verwandter Systeme I 38, 173-198 (1931).
[11]
Hennessy, M.: A proof system for communicating processes with value-passing. Journal of Formal Aspects of Computer Science 3, 346-366 (1991).
[12]
Hennessy, M., Ingólfsdóttir, A.: Communicating processes with value-passing and assignment. Journal of Formal Aspects of Computing 5, 432-466 (1993).
[13]
Hennessy, M., Ingólfsdóttir, A.: A theory of communicating processes with value-passing. Information and Computation 107, 202-236 (1993).
[14]
Hennessy, M., Lin, H.: Symbolic bisimulations. Theoretical Computer Science 138, 353-369 (1995).
[15]
Hennessy, M., Lin, H.: Proof systems for message passing process algebras. Formal Aspects of Computing 8, 379-407 (1996).
[16]
Hennessy, M., Lin, H.: Unique fixpoint induction for message-passing process calculi. In: Proc. Computing: Australian Theory Symposium (CAT 1997), vol. 8, pp. 122-131 (1997).
[17]
Hennessy, M., Lin, H., Rathke, J.: Unique fixpoint induction for message-passing process calculi. Science of Computer Programming 41, 241-275 (1997).
[18]
Hennessy, M., Milner, R.: Algebraic laws for nondeterminism and concurrency. Journal of ACM 32, 137-161 (1985).
[19]
Hoare, C.: Communicating sequential processes. Communications of ACM 21, 666-677 (1978).
[20]
Hoare, C.: Communicating Sequential Processes. Prentice Hall (1985).
[21]
Ingólfsdóttir, A., Lin, H.: A symbolic approach to value-passing processes. In: Bergstra, J., Ponse, A., Smolka, S. (eds.) Handbook of Process Algebra, pp. 427-478. North-Holland (2001).
[22]
Lohrey, M., D'Argenio, P.R., Hermanns, H.: Axiomatising divergence. In: Widmayer, P., Triguero, F., Morales, R., Hennessy, M., Eidenbenz, S., Conejo, R. (eds.) ICALP 2002. LNCS, vol. 2380, pp. 585-596. Springer, Heidelberg (2002).
[23]
Lohrey, M., D'Argenio, P., Hermanns, H.: Axiomatising divergence. Information and Computatio 203, 115-144 (2005).
[24]
Lin, H.: A verification tool for value-passing processes. In: Proceedings of 13th International Symposium on Protocol Specification, Testing and Verification, IFIP Transactions (1993).
[25]
Lin, H.: Symbolic transition graphs with assignment. In: Sassone, V., Montanari, U. (eds.) CONCUR 1996. LNCS, vol. 1119, pp. 50-65. Springer, Heidelberg (1996).
[26]
Lin, H.: "On-the-fly" instantiation of value-passing processes. In: Proc. FORTH/PSTV 1998 (1998).
[27]
Milner, R.: Communication and Concurrency. Prentice Hall (1989).
[28]
Milner, R.: A complete axiomatization system for observational congruence of finite state behaviours. Information and Computation 81, 227-247 (1989).
[29]
Milner, R., Parrow, J., Walker, D.: A calculus of mobile processes. Information and Computation 100, 1-40 (Part I), 41-77 (Part II) (1992).
[30]
Oppen, D.: A 222pn upper bound on the complexity of presburger arithmetic. Journal of Computer and System Sciences 16, 323-332 (1978).
[31]
Palamidessi, C.: Comparing the expressive power of the synchronous and the asynchronous π-calculus. Mathematical Structures in Computer Science 13, 685-719 (2003).
[32]
Park, D.: Concurrency and automata on infinite sequences. In: Deussen, P. (ed.) GI-TCS 1981. LNCS, vol. 104, pp. 167-183. Springer, Heidelberg (1981).
[33]
Presburger, M.: Über die vollständigkeit eines gewissen systems der arithmetik ganzer zahlen, in welchem die addition als einzige operation hervortritt. In: Warsaw Mathematics Congress, vol. 395, pp. 92-101 (1929).
[34]
Priese, L.: On the concept of simulation in asynchronous, concurrent systems. Progress in Cybernatics and Systems Research 7, 85-92 (1978).
[35]
Parrow, J., Sangiorgi, D.: Algebraic theories for name-passing calculi. Information and Computation 120, 174-197 (1995).
[36]
Rathke, J.: Symbolic Techniques for Value-Passing Calculi. PhD thesis, University of Sussex (1997).
[37]
Rathke, J.: Unique fixpoint induction for value-passing processes. In: Proc. LICS 1997. IEEE Press (1997).
[38]
Rogers, H.: Theory of Recursive Functions and Effective Computability. MIT Press (1987).
[39]
Roscoe, A.: The Theory and Practice of Concurrency. Prentice Hall (1997).
[40]
Sangiorgi, D.: From π-calculus to higher order π-calculus-and back. In: Gaudel, M.-C., Jouannaud, J.-P. (eds.) TAPSOFT 1993. LNCS, vol. 668, pp. 151-166. Springer, Heidelberg (1993).
[41]
Thomsen, B.: A calculus of higher order communicating systems. In: Proc. POPL 1989, pp. 143-154 (1989).
[42]
Thomsen, B.: Plain chocs -- a second generation calculus for higher order processes. Acta Informatica 30, 1-59 (1993).
[43]
Thomsen, B.: A theory of higher order communicating systems. Information and Computation 116, 38-57 (1995).
[44]
van Glabbeek, R., Weijland, W.: Branching time and abstraction in bisimulation semantics. In: Information Processing 1989, pp. 613-618. North-Holland (1989).

Cited By

View all
  1. The value-passing calculus

    Recommendations

    Comments

    Information & Contributors

    Information

    Published In

    cover image Guide books
    Theories of Programming and Formal Methods: essays dedicated to Jifeng He on the occasion of his 70th birthday
    January 2013
    412 pages
    ISBN:9783642396977
    • Editors:
    • Zhiming Liu,
    • Jim Woodcock,
    • Huibiao Zhu

    Publisher

    Springer-Verlag

    Berlin, Heidelberg

    Publication History

    Published: 01 January 2013

    Qualifiers

    • Chapter

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)0
    • Downloads (Last 6 weeks)0
    Reflects downloads up to 31 Dec 2024

    Other Metrics

    Citations

    Cited By

    View all

    View Options

    View options

    Media

    Figures

    Other

    Tables

    Share

    Share

    Share this Publication link

    Share on social media