Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.5555/2616448.2616452acmotherconferencesArticle/Chapter ViewAbstractPublication PagesnsdiConference Proceedingsconference-collections
Article

High throughput data center topology design

Published: 02 April 2014 Publication History

Abstract

With high throughput networks acquiring a crucial role in supporting data-intensive applications, a variety of data center network topologies have been proposed to achieve high capacity at low cost. While this work explores a large number of design points, even in the limited case of a network of identical switches, no proposal has been able to claim any notion of optimality. The case of heterogeneous networks, incorporating multiple line-speeds and port-counts as data centers grow over time, introduces even greater complexity.
In this paper, we present the first non-trivial upper-bound on network throughput under uniform traffic patterns for any topology with identical switches. We then show that random graphs achieve throughput surprisingly close to this bound, within a few percent at the scale of a few thousand servers. Apart from demonstrating that homogeneous topology design may be reaching its limits, this result also motivates our use of random graphs as building blocks for design of heterogeneous networks. Given a heterogeneous pool of network switches, we explore through experiments and analysis, how the distribution of servers across switches and the interconnection of switches affect network throughput. We apply these insights to a real-world heterogeneous data center topology, VL2, demonstrating as much as 43% higher throughput with the same equipment.

References

[1]
CPLEX Linear Program Solver. http://www-01.ibm.com/software/integration/optimization/cplex-optimizer/.
[2]
M. Al-Fares, A. Loukissas, and A. Vahdat. A scalable, commodity data center network architecture. In SIGCOMM, 2008.
[3]
M. Alizadeh, A. Greenberg, D. A. Maltz, J. Padhye, P. Patel, B. Prabhakar, S. Sengupta, and M. Sridharan. DCTCP: Efficient packet transport for the commoditized data center. In SIGCOMM, 2010.
[4]
M. Alizadeh, A. Kabbani, T. Edsall, B. Prabhakar, A. Vahdat, and M. Yasuda. Less is More: Trading a little Bandwidth for Ultra-Low Latency in the Data Center. NSDI, 2012.
[5]
M. Alizadeh, S. Yang, S. Katti, N. McKeown, B. Prabhakar, and S. Shenker. Deconstructing datacenter packet transport. HotNets, 2012.
[6]
B. Bollobás and W. F. de la Vega. The diameter of random regular graphs. In Combinatorica 2, 1981.
[7]
V. G. Cerf, D. D. Cowan, R. C. Mullin, and R. G. Stanton. A lower bound on the average shortest path length in regular graphs. Networks, 1974.
[8]
C. Clos. A study of non-blocking switching networks. Bell System Technical Journal, 32(2):406-424, 1953.
[9]
F. Comellas and C. Delorme. The (degree, diameter) problem for graphs. http://maite71.upc. es/grup_de_grafs/table_g.html/.
[10]
A. R. Curtis, T. Carpenter, M. Elsheikh, A. Lopez-Ortiz, and S. Keshav. Rewire: An optimization-based framework for unstructured data center network design. In INFOCOM, 2012.
[11]
A. R. Curtis, S. Keshav, and A. Lopez-Ortiz. LEGUP: using heterogeneity to reduce the cost of data center network upgrades. In CoNEXT, 2010.
[12]
N. Farrington, G. Porter, S. Radhakrishnan, H. H. Bazzaz, V. Subramanya, Y. Fainman, G. Papen, and A. Vahdat. Helios: A hybrid electrical/optical switch architecture for modular data centers. In SIGCOMM, 2010.
[13]
A. Greenberg, J. R. Hamilton, N. Jain, S. Kandula, C. Kim, P. Lahiri, D. A. Maltz, P. Patel, and S. Sengupta. Vl2: A scalable and flexible data center network. In SIGCOMM, 2009.
[14]
C. Guo, G. Lu, D. Li, H. Wu, X. Zhang, Y. Shi, C. Tian, Y. Zhang, and S. Lu. Bcube: A high performance, server-centric network architecture for modular data centers. In SIGCOMM, 2009.
[15]
C. Guo, H. Wu, K. Tan, L. Shi, Y. Zhang, and S. Lu. Dcell: A scalable and fault-tolerant network structure for data centers. In SIGCOMM, 2008.
[16]
S. A. Jyothi, A. Singla, P. B. Godfrey, and A. Kolla. Measuring and Understanding Throughput of Network Topologies. Technical report, 2014. http://arxiv.org/abs/1402.2531.
[17]
F. T. Leighton. Introduction to parallel algorithms and architectures: Arrays, trees, hypercubes. 1991.
[18]
T. Leighton and S. Rao. Multicommodity max-flow min-cut theorems and their use in designing approximation algorithms. Journal of the ACM, 1999.
[19]
M. Miller and J. Siran. Moore graphs and beyond: A survey of the degree/diameter problem. ELECTRONIC JOURNAL OF COMBINATORICS, 2005.
[20]
R. N. Mysore, A. Pamboris, N. Farrington, N. Huang, P. Miri, S. Radhakrishnan, V. Subramanya, and A. Vahdat. Portland: A scalable fault-tolerant layer 2 data center network fabric. In SIGCOMM, 2009.
[21]
J.-Y. Shin, B. Wong, and E. G. Sirer. Small-world datacenters. ACM SOCC, 2011.
[22]
A. Singla, P. B. Godfrey, and A. Kolla. High Throughput Data Center Topology Design. Technical report, 2013. http://arxiv.org/abs/1309.7066.
[23]
A. Singla, C.-Y. Hong, L. Popa, and P. B. Godfrey. Jellyfish: Network Data Centers Randomly. In NSDI, 2012.
[24]
A. Singla, S. A. Jyothi, C.-Y. Hong, L. Popa, P. B. Godfrey, and A. Kolla. TopoBench: A network topology benchmarking tool. https://github. com/ankitsingla/topobench, 2014.
[25]
A. Singla, A. Singh, K. Ramachandran, L. Xu, and Y. Zhang. Proteus: a topology malleable data center network. In HotNets, 2010.
[26]
G. Wang, D. G. Andersen, M. Kaminsky, K. Papagiannaki, T. S. E. Ng, M. Kozuch, and M. Ryan. c-through: Part-time optics in data centers. In SIGCOMM, 2010.
[27]
C. Wiki. The Degree-Diameter Problem for General Graphs. http://goo.gl/iFRJS.
[28]
D. Wischik, C. Raiciu, A. Greenhalgh, and M. Handley. Design, implementation and evaluation of congestion control for multipath tcp. In NSDI, 2011.
[29]
H. Wu, G. Lu, D. Li, C. Guo, and Y. Zhang. Mdcube: A high performance network structure for modular data center interconnection. In CoNext, 2009.
[30]
X. Zhou, Z. Zhang, Y. Zhu, Y. Li, S. Kumar, A. Vahdat, B. Y. Zhao, and H. Zheng. Mirror mirror on the ceiling: flexible wireless links for data centers. In SIGCOMM, 2012.

Cited By

View all
  • (2021)A throughput-centric view of the performance of datacenter topologiesProceedings of the 2021 ACM SIGCOMM 2021 Conference10.1145/3452296.3472913(349-369)Online publication date: 9-Aug-2021
  • (2019)Modeling Universal Globally Adaptive Load-Balanced RoutingACM Transactions on Parallel Computing10.1145/33496206:2(1-23)Online publication date: 30-Aug-2019
  • (2019)Bandwidth steering in HPC using silicon nanophotonicsProceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis10.1145/3295500.3356145(1-25)Online publication date: 17-Nov-2019
  • Show More Cited By
  1. High throughput data center topology design

    Recommendations

    Comments

    Information & Contributors

    Information

    Published In

    cover image ACM Other conferences
    NSDI'14: Proceedings of the 11th USENIX Conference on Networked Systems Design and Implementation
    April 2014
    546 pages
    ISBN:9781931971096

    Sponsors

    • USENIX Assoc: USENIX Assoc

    In-Cooperation

    Publisher

    USENIX Association

    United States

    Publication History

    Published: 02 April 2014

    Check for updates

    Qualifiers

    • Article

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)0
    • Downloads (Last 6 weeks)0
    Reflects downloads up to 13 Jan 2025

    Other Metrics

    Citations

    Cited By

    View all
    • (2021)A throughput-centric view of the performance of datacenter topologiesProceedings of the 2021 ACM SIGCOMM 2021 Conference10.1145/3452296.3472913(349-369)Online publication date: 9-Aug-2021
    • (2019)Modeling Universal Globally Adaptive Load-Balanced RoutingACM Transactions on Parallel Computing10.1145/33496206:2(1-23)Online publication date: 30-Aug-2019
    • (2019)Bandwidth steering in HPC using silicon nanophotonicsProceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis10.1145/3295500.3356145(1-25)Online publication date: 17-Nov-2019
    • (2018)Characterizing the algorithmic complexity of reconfigurable data center architecturesProceedings of the 2018 Symposium on Architectures for Networking and Communications Systems10.1145/3230718.3230722(89-96)Online publication date: 23-Jul-2018
    • (2017)Analysis and experimental demonstration of an optical switching enabled scalable data center network architectureOptical Switching and Networking10.1016/j.osn.2016.04.00223:P3(205-214)Online publication date: 1-Jan-2017
    • (2017)Optical switching based small-world data center networkComputer Communications10.1016/j.comcom.2017.01.001103:C(153-164)Online publication date: 1-May-2017
    • (2016)Measuring and understanding throughput of network topologiesProceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis10.5555/3014904.3014991(1-12)Online publication date: 13-Nov-2016
    • (2016)DiamondProceedings of the 13th Usenix Conference on Networked Systems Design and Implementation10.5555/2930611.2930654(657-669)Online publication date: 16-Mar-2016
    • (2016)Fat-FREE TopologiesProceedings of the 15th ACM Workshop on Hot Topics in Networks10.1145/3005745.3005747(64-70)Online publication date: 9-Nov-2016
    • (2016)XpanderProceedings of the 12th International on Conference on emerging Networking EXperiments and Technologies10.1145/2999572.2999580(205-219)Online publication date: 6-Dec-2016
    • Show More Cited By

    View Options

    View options

    Media

    Figures

    Other

    Tables

    Share

    Share

    Share this Publication link

    Share on social media